463
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Striatal functional connectivity in chronic ketamine users: a pilot study

, , , , , & show all
Pages 31-43 | Received 04 Oct 2018, Accepted 09 Feb 2019, Published online: 02 Jul 2019

References

  • Bari A, Robbins TW. Inhibition and impulsivity: behavioral and neural basis of response control. Prog Neurobiol. 2013;108:44–79. doi:10.1016/j.pneurobio.2013.06.005.
  • Crews FT, Boettiger CA. Impulsivity, frontal lobes and risk for addiction. Pharmacol Biochem Behav. 2009;93:237–47. doi:10.1016/j.pbb.2009.04.018.
  • Dalley JW, Everitt BJ, Robbins TW. Impulsivity, compulsivity, and top-down cognitive control. Neuron. 2011;69:680–94. doi:10.1016/j.neuron.2011.01.020.
  • Jentsch JD, Pennington ZT. Reward, interrupted: inhibitory control and its relevance to addictions. Neuropharmacology. 2014;76 Pt B:479–86. doi:10.1016/j.neuropharm.2013.05.022.
  • Jentsch JD, Taylor JR. Impulsivity resulting from frontostriatal dysfunction in drug abuse: implications for the control of behavior by reward-related stimuli. Psychopharmacology. 1999;146:373–90.
  • Winstanley CA, Olausson P, Taylor JR, Jentsch JD. Insight into the relationship between impulsivity and substance abuse from studies using animal models. Alcohol Clin Exp Res. 2010;34:1306–18. doi:10.1111/j.1530-0277.2010.01215.x.
  • Gerra G, Angioni L, Zaimovic A, Moi G, Bussandri M, Bertacca S, Santoro G, Gardini S, Caccavari R, Nicoli MA. Substance use among high-school students: relationships with temperament, personality traits, and parental care perception. Subst Use Misuse. 2004;39:345–67.
  • Harden KP, Tucker-Drob EM. Individual differences in the development of sensation seeking and impulsivity during adolescence: further evidence for a dual systems model. Dev Psychol. 2011;47:739–46. doi:10.1037/a0023279.
  • LoBue C, Cullum CM, Braud J, Walker R, Winhusen T, Suderajan P, Adinoff B. Optimal neurocognitive, personality and behavioral measures for assessing impulsivity in cocaine dependence. Am J Drug Alcohol Abuse. 2014;40:455–62. doi:10.3109/00952990.2014.939752.
  • Nielsen DA, Ho A, Bahl A, Varma P, Kellogg S, Borg L, Kreek MJ. Former heroin addicts with or without a history of cocaine dependence are more impulsive than controls. Drug Alcohol Depen. 2012;124:113–20. doi:10.1016/j.drugalcdep.2011.12.022.
  • Vonmoos M, Hulka LM, Preller KH, Jenni D, Schulz C, Baumgartner MR, Quednow BB. Differences in self-reported and behavioral measures of impulsivity in recreational and dependent cocaine users. Drug Alcohol Depend. 2013;133:61–70. doi:10.1016/j.drugalcdep.2013.05.032.
  • Zeng H, Lee TMC, Waters JH, So KF, Sham PC, Schottenfeld RS, Marienfeld C, Chawarski MC. Impulsivity, cognitive function, and their relationship in heroin-dependent individuals. J Clin Exp Neuropsyc. 2013;35:897–905. doi:10.1080/13803395.2013.828022.
  • Robles E, Huang BE, Simpson PM, McMillan DE. Delay discounting, impulsiveness, and addiction severity in opioid-dependent patients. J Subst Abuse Treat. 2011;41:354–62. doi:10.1016/j.jsat.2011.05.003.
  • Kirby KN, Petry NM, Bickel WK. Heroin addicts have higher discount rates for delayed rewards than non-drug-using controls. J Exp Psychol Gen. 1999;128:78–87.
  • Dissabandara LO, Loxton NJ, Dias SR, Dodd PR, Daglish M, Stadlin A. Dependent heroin use and associated risky behaviour: the role of rash impulsiveness and reward sensitivity. Addict Behav. 2014;39:71–76. doi:10.1016/j.addbeh.2013.06.009.
  • Wilson MJ, Vassileva J. Neurocognitive and psychiatric dimensions of hot, but not cool, impulsivity predict HIV sexual risk behaviors among drug users in protracted abstinence. Am J Drug Alcohol Ab. 2016;42:231–41. doi:10.3109/00952990.2015.1121269.
  • Moshier SJ, Ewen M, Otto MW. Impulsivity as a moderator of the intention-behavior relationship for illicit drug use in patients undergoing treatment. Addict Behav. 2013;38:1651–55. doi:10.1016/j.addbeh.2012.09.008.
  • Stevens L, Verdejo-Garcia A, Goudriaan AE, Roeyers H, Dom G, Vanderplasschen W. Impulsivity as a vulnerability factor for poor addiction treatment outcomes: a review of neurocognitive findings among individuals with substance use disorders. J Subst Abuse Treat. 2014;47:58–72. doi:10.1016/j.jsat.2014.01.008.
  • Wise RA. Dopamine, learning and motivation. Nat Rev Neurosci. 2004;5:483–94. doi:10.1038/nrn1406.
  • Clarke R, Adermark L. Dopaminergic regulation of striatal interneurons in reward and addiction: focus on alcohol. Neural Plast. 2015;2015:814567. doi:10.1155/2015/814567.
  • Belin D, Everitt BJ. Cocaine seeking habits depend upon doparnine-dependent serial connectivity linking the ventral with the dorsal striatum. Neuron. 2008;57:432–41. doi:10.1016/j.neuron.2007.12.019.
  • Belin-Rauscent A, Everitt BJ, Belin D. Intrastriatal shifts mediate the transition from drug-seeking actions to habits. Biol Psychiatry. 2012;72:343–45. doi:10.1016/j.biopsych.2012.07.001.
  • Cardinal RN, Pennicott DR, Sugathapala CL, Robbins TW, Everitt BJ. Impulsive choice induced in rats by lesions of the nucleus accumbens core. Science. 2001;292:2499–501. doi:10.1126/science.1060818.
  • Brasted PJ, Robbins TW, Dunnett SB. Distinct roles for striatal subregions in mediating response processing revealed by focal excitotoxic lesions. Behav Neurosci. 1999;113:253–64.
  • Feja M, Hayn L, Koch M. Nucleus accumbens core and shell inactivation differentially affects impulsive behaviours in rats. Prog Neuropsychopharmacol Biol Psychiatry. 2014;54:31–42. doi:10.1016/j.pnpbp.2014.04.012.
  • Wisner KM, Patzelt EH, Lim KO, MacDonald AW. An intrinsic connectivity network approach to insula-derived dysfunctions among cocaine users. Am J Drug Alcohol Ab. 2013;39:403–13. doi:10.3109/00952990.2013.848211.
  • McHugh MJ, Demers CH, Braud J, Briggs R, Adinoff B, Stein EA. Striatal-insula circuits in cocaine addiction: implications for impulsivity and relapse risk. Am J Drug Alcohol Abuse. 2013;39:424–32. doi:10.3109/00952990.2013.847446.
  • Economides M, Guitart-Masip M, Kurth-Nelson Z, Dolan RJ. Arbitration between controlled and impulsive choices. NeuroImage. 2015;109:206–16. doi:10.1016/j.neuroimage.2014.12.071.
  • Ersche KD, Jones PS, Williams GB, Turton AJ, Robbins TW, Bullmore ET. Abnormal brain structure implicated in stimulant drug addiction. Science. 2012;335:601–04. doi:10.1126/science.1214463.
  • Hu YZ, Salmeron BJ, Gu H, Stein EA, Yang YH. Impaired functional connectivity within and between frontostriatal circuits and its association with compulsive drug use and trait impulsivity in cocaine addiction. JAMA Psychiatry. 2015;72:584–92. doi:10.1001/jamapsychiatry.2015.1.
  • DeLong MR, Wichmann T. Circuits and circuit disorders of the basal ganglia. Arch Neurol. 2007;64:20–24. doi:10.1001/archneur.64.1.20.
  • Haber SN. Corticostriatal circuitry. Dialogues Clin Neurosci. 2016;18:7–21.
  • Bell PT, Shine JM. Subcortical contributions to large-scale network communication. Neurosci Biobehav Rev. 2016;71:313–22. doi:10.1016/j.neubiorev.2016.08.036.
  • Burguiere E, Monteiro P, Mallet L, Feng G, Graybiel AM. Striatal circuits, habits, and implications for obsessive-compulsive disorder. Curr Opin Neurobiol. 2015;30:59–65. doi:10.1016/j.conb.2014.08.008.
  • Haaland KY, Dum RP, Mutha PK, Strick PL, Troster AI. The neuropsychology of movement and movement disorders: neuroanatomical and cognitive considerations. J Int Neuropsychol Soc. 2017;23:768–77. doi:10.1017/S1355617717000698.
  • Rubia K, Alegria AA, Brinson H. Brain abnormalities in attention-deficit hyperactivity disorder: a review. Rev Neurol. 2014;58:S3–16. doi:10.33588/rn.58S01.2013570.
  • Schultz W. Reward functions of the basal ganglia. J Neural Transm. 2016;123:679–93. doi:10.1007/s00702-016-1510-0.
  • Narcotics Division HK Central Registry of Drug Abuse Sixty-fourth Report, 2015; 7–18.
  • Cheung YC, Fei LL. Hong Kong poison information centre: annual report. Hong Kong J Emergency Med. 2012;19:110–20. doi:10.1177/102490791201900206.
  • Curran HV, Monaghan L. In and out of the K-hole: a comparison of the acute and residual effects of ketamine in frequent and infrequent ketamine users. Addiction. 2001;96:749–60. doi:10.1080/09652140020039116.
  • Dillon P, Copeland J, Jansen K. Patterns of use and harms associated with non-medical ketamine use. Drug Alcohol Depen. 2003;69:23–28. doi:10.1016/S0376-8716(02)00243-0.
  • Gill JR, Stajic M. Ketamine in non-hospital and hospital deaths in New York City. J Forensic Sci. 2000;45:655–58.
  • Lankenau SE, Clatts MC. Ketamine injection among high risk youth: preliminary findings from New York City. J Drug Issues. 2002;32:893–905.
  • Morgan MJ. Memory deficits associated with recreational use of “ecstasy” (MDMA). Psychopharmacology. 1999;141:30–36.
  • Parrott AC, Milani RM, Parmar R, Turner JD. Recreational ecstasy/MDMA and other drug users from the UK and Italy: psychiatric symptoms and psychobiological problems. Psychopharmacology. 2001;159:77–82. doi:10.1007/s002130100897.
  • Chen WJ, Wu SC, Tsay WI, Chen YT, Hsiao PC, Yu YH, Ting TT, Chen CY, Tu YK, Huang JH, et al. Differences in prevalence, socio-behavioral correlates, and psychosocial distress between club drug and hard drug use in Taiwan: results from the 2014 National Survey of Substance Use. Int J Drug Policy. 2017;48:99–107. doi:10.1016/j.drugpo.2017.07.003.
  • Han E, Kwon NJ, Feng LY, Li JH, Chung H. Illegal use patterns, side effects, and analytical methods of ketamine. Forensic Sci Int. 2016;268:25–34. doi:10.1016/j.forsciint.2016.09.001.
  • Cottone P, Iemolo A, Narayan AR, Kwak J, Momaney D, Sabino V. The uncompetitive NMDA receptor antagonists ketamine and memantine preferentially increase the choice for a small, immediate reward in low-impulsive rats. Psychopharmacology. 2013;226:127–38. doi:10.1007/s00213-012-2898-3.
  • Fletcher PJ, Rizos Z, Noble K, Higgins GA. Impulsive action induced by amphetamine, cocaine and MK801 is reduced by 5-HT2C receptor stimulation and 5-HT2A receptor blockade. Neuropharmacology. 2011;61:468–77. doi:10.1016/j.neuropharm.2011.02.025.
  • Murphy ER, Dalley JW, Robbins TW. Local glutamate receptor antagonism in the rat prefrontal cortex disrupts response inhibition in a visuospatial attentional task. Psychopharmacology. 2005;179:99–107. doi:10.1007/s00213-004-2068-3.
  • Murphy ER, Fernando ABP, Urcelay GP, Robinson ESJ, Mar AC, Theobald DEH, Dalley JW, Robbins TW. Impulsive behaviour induced by both NMDA receptor antagonism and GABA(A) receptor activation in rat ventromedial prefrontal cortex. Psychopharmacology. 2012;219:401–10. doi:10.1007/s00213-011-2572-1.
  • Chen YC, Wang LJ, Lin SK, Chen CK. Neurocognitive profiles of methamphetamine users: comparison of those with or without concomitant ketamine use. Subst Use Misuse. 2015;50:1778–85. doi:10.3109/10826084.2015.1050110.
  • Higgins GA, Silenieks LB, MacMillan C, Sevo J, Zeeb FD, Thevarkunnel S. Enhanced attention and impulsive action following NMDA receptor GluN2B-selective antagonist pretreatment. Behav Brain Res. 2016;311:1–14. doi:10.1016/j.bbr.2016.05.025.
  • Lovinger DM. Neurotransmitter roles in synaptic modulation, plasticity and learning in the dorsal striatum. Neuropharmacology. 2010;58:951–61. doi:10.1016/j.neuropharm.2010.01.008.
  • Ma YY, Cepeda C, Cui CL. The role of striatal NMDA receptors in drug addiction. Int Rev Neurobiol. 2009;89:131–46. doi:10.1016/S0074-7742(09)89006-5.
  • Kann S, Zhang S, Manza P, Leung HC, Li CR. Hemispheric lateralization of resting-state functional connectivity of the anterior insula: association with age, gender, and a novelty-seeking trait. Brain Connect. 2016;6:724–34. doi:10.1089/brain.2016.0443.
  • Kline RL, Zhang S, Farr OM, Hu S, Zaborszky L, Samanez-Larkin GR, Li CS. The effects of methylphenidate on resting-state functional connectivity of the basal nucleus of meynert, locus coeruleus, and ventral tegmental area in healthy adults. Front Hum Neurosci. 2016;10:149. doi:10.3389/fnhum.2016.00149.
  • Tomasi DG, Shokri-Kojori E, Volkow ND. Temporal evolution of brain functional connectivity metrics: could 7 min of rest be enough? Cerebral Cortex. 2016. doi:10.1093/cercor/bhw227.
  • Zhang S, Hu S, Chao HH, Li CS. Resting-state functional connectivity of the locus coeruleus in humans: in comparison with the ventral tegmental area/substantia nigra pars compacta and the effects of age. Cerebral Cortex. 2016;26:3413–27. doi:10.1093/cercor/bhv172.
  • Zhang S, Hu S, Fucito LM, Luo X, Mazure CM, Zaborszky L, Li CR. Resting-state functional connectivity of the basal nucleus of meynert in cigarette smokers: dependence level and gender differences. Nicotine Tob Res. 2016. doi:10.1093/ntr/ntw209.
  • Ashburner J, Friston KJ. Nonlinear spatial normalization using basis functions. Hum Brain Mapp. 1999;7:254–66.
  • Friston K, Ashburner J, Frith C, Polone J, Heather J, Frackowiak R. Spatial registration and normalization of images. Hum Brain Mapp. 1995;2:165–89. doi:10.1002/hbm.460030303.
  • Rombouts SA, Stam CJ, Kuijer JP, Scheltens P, Barkhof F. Identifying confounds to increase specificity during a “no task condition”. Evidence for hippocampal connectivity using fMRI. NeuroImage. 2003;20:1236–45. doi:10.1016/S1053-8119(03)00386-0.
  • Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A. 2005;102:9673–78. doi:10.1073/pnas.0504136102.
  • Fair DA, Schlaggar BL, Cohen AL, Miezin FM, Dosenbach NU, Wenger KK, Fox MD, Snyder AZ, Raichle ME, Petersen SE. A method for using blocked and event-related fMRI data to study “resting state” functional connectivity. NeuroImage. 2007;35:396–405. doi:10.1016/j.neuroimage.2006.11.051.
  • Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci. 2007;8:700–11. doi:10.1038/nrn2201.
  • Cordes D, Haughton VM, Arfanakis K, Carew JD, Turski PA, Moritz CH, Quigley MA, Meyerand ME. Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data. AJNR Am J Neuroradiol. 2001;22:1326–33.
  • Lowe MJ, Mock BJ, Sorenson JA. Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations. NeuroImage. 1998;7:119–32. doi:10.1006/nimg.1997.0315.
  • Van Dijk KR, Sabuncu MR, Buckner RL. The influence of head motion on intrinsic functional connectivity MRI. NeuroImage. 2012;59:431–38. doi:10.1016/j.neuroimage.2011.07.044.
  • Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage. 2012;59:2142–54. doi:10.1016/j.neuroimage.2011.10.018.
  • Smyser CD, Inder TE, Shimony JS, Hill JE, Degnan AJ, Snyder AZ, Neil JJ. Longitudinal analysis of neural network development in preterm infants. Cerebral Cortex. 2010;20:2852–62. doi:10.1093/cercor/bhq035.
  • Tomasi D, Volkow ND. Functional connectivity of substantia nigra and ventral tegmental area: maturation during adolescence and effects of ADHD. Cerebral Cortex. 2014;24:935–44. doi:10.1093/cercor/bhs382.
  • Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage. 2002;15:273–89. doi:10.1006/nimg.2001.0978.
  • Li CS, Ide JS, Zhang S, Hu S, Chao HH, Zaborszky L. Resting state functional connectivity of the basal nucleus of Meynert in humans: in comparison to the ventral striatum and the effects of age. NeuroImage. 2014;97:321–32. doi:10.1016/j.neuroimage.2014.04.019.
  • Zhang S, Hu S, Chao HH, Li CR. Hemispheric lateralization of resting-state functional connectivity of the ventral striatum: an exploratory study. Brain Struct Funct. 2017;222:2573–83. doi:10.1007/s00429-016-1358-y.
  • Zaborszky L, Hoemke L, Mohlberg H, Schleicher A, Amunts K, Zilles K. Stereotaxic probabilistic maps of the magnocellular cell groups in human basal forebrain. NeuroImage. 2008;42:1127–41. doi:10.1016/j.neuroimage.2008.05.055.
  • Jenkins GM, Watts DG. Spectral Analysis and Its Applications. San Francisco: Holden-Day; 1968.
  • Berry KJ, Mielke PW Jr. A Monte Carlo investigation of the Fisher Z transformation for normal and nonnormal distributions. Psychol Rep. 2000;87:1101–14. doi:10.2466/pr0.2000.87.3f.1101.
  • Eklund A, Nichols TE, Knutsson H. Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates. Proc Natl Acad Sci U S A. 2016;113:7900–05. doi:10.1073/pnas.1602413113.
  • MacKinnon DP, Fairchild AJ, Fritz MS. Mediation analysis. Annu Rev Psychol. 2007;58:593–614. doi:10.1146/annurev.psych.58.110405.085542.
  • Wager TD, Davidson ML, Hughes BL, Lindquist MA, Ochsner KN. Prefrontal-subcortical pathways mediating successful emotion regulation. Neuron. 2008;59:1037–50. doi:10.1016/j.neuron.2008.09.006.
  • Zar JH. Biostatistical Analysis. New Jersey: Prentice-Hall, Inc; 1999.
  • Fanelli RR, Klein JT, Reese RM, Robinson DL. Dorsomedial and dorsolateral striatum exhibit distinct phasic neuronal activity during alcohol self-administration in rats. Eur J Neurosci. 2013;38:2637–48. doi:10.1111/ejn.12271.
  • Garavan H, Pankiewicz J, Bloom A, Cho JK, Sperry L, Ross TJ, Salmeron BJ, Risinger R, Kelley D, Stein EA. Cue-induced cocaine craving: neuroanatomical specificity for drug users and drug stimuli. Am J Psychiatry. 2000;157:1789–98.
  • Zhang Y, Gong J, Xie C, Ye EM, Jin X, Song H, Yang Z, Shao Y. Alterations in brain connectivity in three sub-regions of the anterior cingulate cortex in heroin-dependent individuals: evidence from resting state fMRI. Neuroscience. 2015;284:998–1010. doi:10.1016/j.neuroscience.2014.11.007.
  • Fu LP, Bi GH, Zou ZT, Wang Y, Ye EM, Ma L, Ming F, Yang Z. Impaired response inhibition function in abstinent heroin dependents: an fMRI study. Neurosci Lett. 2008;438:322–26. doi:10.1016/j.neulet.2008.04.033.
  • Self DW. Regulation of drug-taking and -seeking behaviors by neuroadaptations in the mesolimbic dopamine system. Neuropharmacology. 2004;47:242–55. doi:10.1016/j.neuropharm.2004.07.005.
  • Schultz W. Behavioral theories and the neurophysiology of reward. Annu Rev Psychol. 2006;57:87–115. doi:10.1146/annurev.psych.56.091103.070229.
  • Volkow ND, Wang GJ, Telang F, Fowler JS, Logan J, Childress AR, Jayne M, Ma Y, Wong C. Cocaine cues and dopamine in dorsal striatum: mechanism of craving in cocaine addiction. J Neurosci. 2006;26:6583–88. doi:10.1523/JNEUROSCI.1544-06.2006.
  • Blasi G, Goldberg TE, Weickert T, Das S, Kohn P, Zoltick B, Bertolino A, Callicott JH, Weinberger DR, Mattay VS. Brain regions underlying response inhibition and interference monitoring and suppression. Eur J Neurosci. 2006;23:1658–64. doi:10.1111/j.1460-9568.2006.04680.x.
  • Hu S, Ide JS, Zhang S, Li CS. Anticipating conflict: neural correlates of a Bayesian belief and its motor consequence. NeuroImage. 2015;119:286–95. doi:10.1016/j.neuroimage.2015.06.032.
  • Manza P, Hu S, Chao HH, Zhang S, Leung HC, Li CR. A dual but asymmetric role of the dorsal anterior cingulate cortex in response inhibition and switching from a non-salient to salient action. NeuroImage. 2016;134:466–74. doi:10.1016/j.neuroimage.2016.04.055.
  • Zhang Z, Fan Q, Zhu Y, Tan L, Chen Y, Gao R, Zhang H, Li Y, Xiao Z. Intrinsic functional connectivity alteration of dorsal and rostral anterior cingulate cortex in obsessive-compulsive disorder: A resting fMRI study. Neurosci Lett. 2017;654:86–92. doi:10.1016/j.neulet.2017.06.026.
  • Wilcox CE, Calhoun VD, Rachakonda S, Claus ED, Littlewood RA, Mickey J, Arenella PB, Hutchison KE. Functional network connectivity predicts treatment outcome during treatment of nicotine use disorder. Psychiatry Res. 2017;265:45–53. doi:10.1016/j.pscychresns.2017.04.011.
  • Li S, Demenescu LR, Sweeney-Reed CM, Krause AL, Metzger CD, Walter M. Novelty seeking and reward dependence-related large-scale brain networks functional connectivity variation during salience expectancy. Hum Brain Mapp. 2017;38:4064–77. doi:10.1002/hbm.23648.
  • Bostan AC, Dum RP, Strick PL. Cerebellar networks with the cerebral cortex and basal ganglia. Trends Cogn Sci. 2013;17:241–54. doi:10.1016/j.tics.2013.03.003.
  • O’Doherty JP, Dayan P, Friston K, Critchley H, Dolan RJ. Temporal difference models and reward-related learning in the human brain. Neuron. 2003;38:329–37.
  • Swain RA, Kerr AL, Thompson RF. The cerebellum: a neural system for the study of reinforcement learning. Front Behav Neurosci. 2011;5:8. doi:10.3389/fnbeh.2011.00008.
  • Anderson CM, Maas LC, Frederick B, Bendor JT, Spencer TJ, Livni E, Lukas SE, Fischman AJ, Madras BK, Renshaw PF, et al. Cerebellar vermis involvement in cocaine-related behaviors. Neuropsychopharmacology. 2005;31:1318. doi:10.1038/sj.npp.1300937.
  • Grant S, London ED, Newlin DB, Villemagne VL, Liu X, Contoreggi C, Phillips RL, Kimes AS, Margolin A. Activation of memory circuits during cue-elicited cocaine craving. Proc Natl Acad Sci U S A. 1996;93:12040–45. doi:10.1073/pnas.93.21.12040.
  • Moreno-Rius J, Miquel M. The cerebellum in drug craving. Drug Alcohol Depend. 2017;173:151–58. doi:10.1016/j.drugalcdep.2016.12.028.
  • Miquel M, Toledo R, Garcia LI, Coria-Avila GA, Manzo J. Why should we keep the cerebellum in mind when thinking about addiction? Curr Drug Abuse Rev. 2009;2:26–40.
  • Koehler S, Ovadia-Caro S, van der Meer E, Villringer A, Heinz A, Romanczuk-Seiferth N, Margulies DS. Increased functional connectivity between prefrontal cortex and reward system in pathological gambling. PLoS One. 2013;8:e84565. doi:10.1371/journal.pone.0084565.
  • Cromwell HC, Tremblay L, Schultz W. Neural encoding of choice during a delayed response task in primate striatum and orbitofrontal cortex. Exp Brain Res. 2018;236:1679–88. doi:10.1007/s00221-018-5253-z.
  • Hanggi J, Lohrey C, Drobetz R, Baetschmann H, Forstmeier S, Maercker A, Jancke L. Strength of structural and functional frontostriatal connectivity predicts self-control in the healthy elderly. Front Aging Neurosci. 2016;8:307. doi:10.3389/fnagi.2016.00307.
  • Angelides NH, Gupta J, Vickery TJ. Associating resting-state connectivity with trait impulsivity. Soc Cogn Affect Neurosci. 2017;12:1001–08. doi:10.1093/scan/nsx031.
  • Kang OS, Chang DS, Jahng GH, Kim SY, Kim H, Kim JW, Chung SY, Yang SI, Park HJ, Lee H, et al. Individual differences in smoking-related cue reactivity in smokers: an eye-tracking and fMRI study. Prog Neuropsychopharmacol Biol Psychiatry. 2012;38:285–93. doi:10.1016/j.pnpbp.2012.04.013.
  • Volkow ND, Chang L, Wang GJ, Fowler JS, Ding YS, Sedler M, Logan J, Franceschi D, Gatley J, Hitzemann R, et al. Low level of brain dopamine D2 receptors in methamphetamine abusers: association with metabolism in the orbitofrontal cortex. Am J Psychiatry. 2001;158:2015–21. doi:10.1176/appi.ajp.158.12.2015.
  • Pittaras E, Callebert J, Chennaoui M, Rabat A, Granon S. Individual behavioral and neurochemical markers of unadapted decision-making processes in healthy inbred mice. Brain Struct Funct. 2016;221:4615–29. doi:10.1007/s00429-016-1192-2.
  • Whiteside SP, Lynam DR. The Five Factor Model and impulsivity: using a structural model of personality to understand impulsivity. Pers Individ Dif. 2001;30:669–89. doi:10.1016/S0191-8869(00)00064-7.
  • Farr OM, Hu S, Zhang S, Li CS. Decreased saliency processing as a neural measure of Barratt impulsivity in healthy adults. NeuroImage. 2012;63:1070–77. doi:10.1016/j.neuroimage.2012.07.049.
  • Hendrick OM, Ide JS, Luo X, Li CS. Dissociable processes of cognitive control during error and non-error conflicts: a study of the stop signal task. PLoS One. 2010;5:e13155. doi:10.1371/journal.pone.0013155.
  • Zhang S, Hu S, Hu J, Wu PL, Chao HH, Li CS. Barratt impulsivity and neural regulation of physiological arousal. Plos One. 2015;10:e0129139. doi:10.1371/journal.pone.0129139.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.