622
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

A role for the CD38 rs3796863 polymorphism in alcohol and monetary reward: evidence from CD38 knockout mice and alcohol self-administration, [11C]-raclopride binding, and functional MRI in humans

, , , , , , , , , , , , , & ORCID Icon show all
Pages 167-179 | Received 07 Jun 2018, Accepted 28 Jun 2019, Published online: 31 Jul 2019

References

  • Wightman RM, Robinson DL. Transient changes in mesolimbic dopamine and their association with ‘reward’. J Neurochem. 2002;82:721–35. doi:10.1046/j.1471-4159.2002.01005.x.
  • Baik JH. Dopamine signaling in reward-related behaviors. Front Neural Circuits. 2013;7:152. doi:10.3389/fncir.2013.00152.
  • Volkow ND, Fowler JS, Wang GJ, Swanson JM, Telang F. Dopamine in drug abuse and addiction: results of imaging studies and treatment implications. Arch Neurol. 2007;64:1575–79. doi:10.1001/archneur.64.11.1575.
  • Whitton AE, Treadway MT, Pizzagalli DA. Reward processing dysfunction in major depression, bipolar disorder and schizophrenia. Curr Opin Psychiatry. 2015;28:7–12. doi:10.1097/YCO.0000000000000122.
  • Garcia-Garcia I, Horstmann A, Jurado MA, Garolera M, Chaudhry SJ, Margulies DS, Villringer A, Neumann J. Reward processing in obesity, substance addiction and non-substance addiction. Obes Rev. 2014;15:853–69.
  • Helie S, Shamloo F, Novak K, Foti D. The roles of valuation and reward processing in cognitive function and psychiatric disorders. Ann N Y Acad Sci. 2017. doi:10.1111/nyas.13327.
  • Howard M, Grimaldi JC, Bazan JF, Lund FE, Santos-Argumedo L, Parkhouse R, Walseth T, Lee H. Formation and hydrolysis of cyclic ADP-ribose catalyzed by lymphocyte antigen CD38. Science. 1993;262:1056–59. doi:10.1126/science.8235624.
  • Partida-Sánchez S, Cockayne DA, Monard S, Jacobson EL, Oppenheimer N, Garvy B, Kusser K, Goodrich S, Howard M, Harmsen A, et al. Cyclic ADP-ribose production by CD38 regulates intracellular calcium release, extracellular calcium influx and chemotaxis in neutrophils and is required for bacterial clearance in vivo. Nat Med. 2001;7:1209–16. doi:10.1038/nm1101-1209.
  • Kato I, Yamamoto Y, Fujimura M, Noguchi N, Takasawa S, Okamoto H. CD38 disruption impairs glucose-induced increases in cyclic ADP-ribose,[Ca2+] i, and insulin secretion. J Biol Chem. 1999;274:1869–72. doi:10.1074/jbc.274.4.1869.
  • Higashida H, Lopatina O, Yoshihara T, Pichugina YA, Soumarokov AA, Munesue T, Minabe Y, Kikuchi M, Ono Y, Korshunova N, et al. Oxytocin signal and social behaviour: comparison among adult and infant oxytocin, oxytocin receptor and CD38 gene knockout mice. J Neuroendocrinol. 2010;22:373–79. doi:10.1111/j.1365-2826.2010.01976.x.
  • Higashida H, Yokoyama S, Huang -J-J, Liu L, Ma W-J, Akther S, Higashida C, Kikuchi M, Minabe Y, Munesue T. Social memory, amnesia, and autism: brain oxytocin secretion is regulated by NAD+ metabolites and single nucleotide polymorphisms of CD38. Neurochem Int. 2012;61:828–38. doi:10.1016/j.neuint.2012.01.030.
  • Jin D, Liu HX, Hirai H, Torashima T, Nagai T, Lopatina O, Shnayder NA, Yamada K, Noda M, Seike T, et al. CD38 is critical for social behaviour by regulating oxytocin secretion. Nature. 2007;446:41–45. doi:10.1038/nature05526.
  • Liu HX, Lopatina O, Higashida C, Tsuji T, Kato I, Takasawa S, Okamoto H, Yokoyama S, Higashida H. Locomotor activity, ultrasonic vocalization and oxytocin levels in infant CD38 knockout mice. Neurosci Lett. 2008;448:67–70. doi:10.1016/j.neulet.2008.09.084.
  • Kim S, Kim T, Lee HR, Jang EH, Ryu HH, Kang M, Rah S-Y, Yoo J, Lee B, Kim J-I, et al. Impaired learning and memory in CD38 null mutant mice. Mol Brain. 2016;9:16. doi:10.1186/s13041-016-0195-5.
  • Akther S, Korshnova N, Zhong J, Liang M, Cherepanov SM, Lopatina O, Komleva YK, Salmina AB, Nishimura T, Fakhrul AA, et al. CD38 in the nucleus accumbens and oxytocin are related to paternal behavior in mice. Mol Brain. 2013;6:41. doi:10.1186/1756-6606-6-41.
  • 2010 Allen Institute for Brain Science. Allen human brain atlas. Available from: human.brain-map.org.
  • Quintana DS, Rokicki J, van der Meer D, Alnaes D, Kaufmann T, Palomera AC, Diset I, Andreassen OA, Westlye LT. Oxytocin pathway gene networks in the human brain. Nature Communications; 2019. doi:10.1038/s41467-019-08503-8.
  • Lachman HM, Papolos DF, Saito T, Yu YM, Szumlanski CL, Weinshilboum RM. Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics. 1996;6:243–50.
  • Chen J, Lipska BK, Halim N, Ma QD, Matsumoto M, Melhem S, Kolachana BS, Hyde TM, Herman MM, Apud J, et al. Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. Am J Hum Genet. 2004;75:807–21. doi:10.1086/425589.
  • Sauer C, Montag C, Reuter M, Kirsch P. Imaging oxytocin x dopamine interactions: an epistasis effect of CD38 and COMT gene variants influences the impact of oxytocin on amygdala activation to social stimuli. Front Neurosci. 2013;7:45. doi:10.3389/fnins.2013.00045.
  • Sauer C, Montag C, Worner C, Kirsch P, Reuter M. Effects of a common variant in the CD38 gene on social processing in an oxytocin challenge study: possible links to autism. Neuropsychopharmacology. 2012;37:1474–82. doi:10.1038/npp.2011.333.
  • Algoe SB, Way BM. Evidence for a role of the oxytocin system, indexed by genetic variation in CD38, in the social bonding effects of expressed gratitude. Soc Cogn Affect Neurosci. 2014;9:1855–61. doi:10.1093/scan/nst182.
  • McInnis OA, McQuaid RJ, Matheson K, Anisman H. Unsupportive social interactions and affective states: examining associations of two oxytocin-related polymorphisms. Stress. 2017;20:122–29. doi:10.1080/10253890.2017.1286326.
  • McQuaid RJ, McInnis OA, Matheson K, Anisman H. Oxytocin and social sensitivity: gene polymorphisms in relation to depressive symptoms and suicidal ideation. Front Hum Neurosci. 2016;10:358. doi:10.3389/fnhum.2016.00358.
  • Tabak BA, Meyer ML, Dutcher JM, Castle E, Irwin MR, Lieberman MD, Eisenberger NI. Oxytocin, but not vasopressin, impairs social cognitive ability among individuals with higher levels of social anxiety: a randomized controlled trial. Soc Cogn Affect Neurosci. 2016;11:1272–79.
  • Lonsdale J, Thomas J, Salvatore M, Phillips R, Lo E, Shad S, et al. The genotype-tissue expression (GTEx) project. 2013;45:580.
  • First MB, Spitzer RL, Gibbon M, Williams JB. User’s guide for the structured clinical interview for DSM-IV axis I disorders SCID-I: clinician version. Washington: American Psychiatric Pub; 1997.
  • Zimmermann US, O’Connor S, Ramchandani VA. Modeling alcohol self-administration in the human laboratory. Curr Top Behav Neurosci. 2013;13:315–53. doi:10.1007/7854_2011_149.
  • Stangl BL, Vatsalya V, Zametkin MR, Cooke ME, Plawecki MH, O’Connor S, Ramchandani VA. Exposure-response relationships during free-access intravenous alcohol self-administration in nondependent drinkers: influence of alcohol expectancies and impulsivity. Int J Neuropsychopharmacol. 2016. doi:10.1093/ijnp/pyw090.
  • Ramchandani VA, Umhau J, Pavon FJ, Ruiz-Velasco V, Margas W, Sun H, Damadzic R, Eskay R, Schoor M, Thorsell A, et al. A genetic determinant of the striatal dopamine response to alcohol in men. Mol Psychiatry. 2011;16:809–17. doi:10.1038/mp.2010.56.
  • Skinner HA, Sheu W-J. Reliability of alcohol use indices. The lifetime drinking history and the MAST. J Stud Alcohol. 1982;43:1157–70.
  • Nikolova YS, Knodt AR, Radtke SR, Hariri AR. Divergent responses of the amygdala and ventral striatum predict stress-related problem drinking in young adults: possible differential markers of affective and impulsive pathways of risk for alcohol use disorder. Mol Psychiatry. 2016;21:348–56. doi:10.1038/mp.2015.85.
  • Forbes EE, Hariri AR, Martin SL, Silk JS, Moyles DL, Fisher PM, Brown SM, Ryan ND, Birmaher B, Axelson DA, et al. Altered striatal activation predicting real-world positive affect in adolescent major depressive disorder. Am J Psychiatry. 2009;166:64–73. doi:10.1176/appi.ajp.2008.07081336.
  • Hariri AR, Brown SM, Williamson DE, Flory JD, de Wit H, Manuck SB. Preference for immediate over delayed rewards is associated with magnitude of ventral striatal activity. J Neurosci. 2006;26:13213–17. doi:10.1523/JNEUROSCI.3446-06.2006.
  • Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75. doi:10.1086/519795.
  • Delgado MR, Nystrom LE, Fissell C, Noll DC, Fiez JA. Tracking the hemodynamic responses to reward and punishment in the striatum. J Neurophysiol. 2000;84:3072–77. doi:10.1152/jn.2000.84.6.3072.
  • Corral-Frias NS, Nikolova YS, Michalski LJ, Baranger DA, Hariri AR, Bogdan R. Stress-related anhedonia is associated with ventral striatum reactivity to reward and transdiagnostic psychiatric symptomatology. Psychol Med. 2015;45:2605–17. doi:10.1017/S0033291715000525.
  • Pessiglione M, Seymour B, Flandin G, Dolan RJ, Frith CD. Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans. Nature. 2006;442:1042–45. doi:10.1038/nature05051.
  • Schott BH, Minuzzi L, Krebs RM, Elmenhorst D, Lang M, Winz OH, Seidenbecher CI, Coenen HH, Heinze H-J, Zilles K, et al. Mesolimbic functional magnetic resonance imaging activations during reward anticipation correlate with reward-related ventral striatal dopamine release. J Neurosci. 2008;28:14311–19. doi:10.1523/JNEUROSCI.2058-08.2008.
  • Weiss F, Lorang MT, Bloom FE, Koob GF. Oral alcohol self-administration stimulates dopamine release in the rat nucleus accumbens: genetic and motivational determinants. J Pharmacol Exp Ther. 1993;267:250–58.
  • Carrillo J, Gonzales RA. A single exposure to voluntary ethanol self-administration produces adaptations in ethanol consumption and accumbal dopamine signaling. Alcohol. 2011;45:559–66. doi:10.1016/j.alcohol.2011.01.003.
  • Czachowski CL, Chappell AM, Samson HH. Effects of raclopride in the nucleus accumbens on ethanol seeking and consumption. Alcohol Clin Exp Res. 2001;25:1431–40.
  • Howard EC, Schier CJ, Wetzel JS, Gonzales RA. The dopamine response in the nucleus accumbens core-shell border differs from that in the core and shell during operant ethanol self-administration. Alcohol Clin Exp Res. 2009;33:1355–65. doi:10.1111/j.1530-0277.2009.00965.x.
  • Samson HH, Chappell AM. Effects of raclopride in the core of the nucleus accumbens on ethanol seeking and consumption: the use of extinction trials to measure seeking. Alcohol Clin Exp Res. 2004;28:544–49.
  • Holroyd CB, Yeung N. Motivation of extended behaviors by anterior cingulate cortex. Trends Cogn Sci. 2012;16:122–28. doi:10.1016/j.tics.2011.12.008.
  • Carlson JM, Foti D, Mujica-Parodi LR, Harmon-Jones E, Hajcak G. Ventral striatal and medial prefrontal BOLD activation is correlated with reward-related electrocortical activity: a combined ERP and fMRI study. Neuroimage. 2011;57:1608–16. doi:10.1016/j.neuroimage.2011.05.037.
  • Ribas-Fernandes JJ, Solway A, Diuk C, McGuire JT, Barto AG, Niv Y, Botvinick MM. A neural signature of hierarchical reinforcement learning. Neuron. 2011;71:370–79.
  • Braun AA, Amos-Kroohs RM, Gutierrez A, Lundgren KH, Seroogy KB, Vorhees CV, Williams MT. 6-Hydroxydopamine-induced dopamine reductions in the nucleus accumbens, but not the medial prefrontal cortex, impair cincinnati water maze egocentric and morris water maze allocentric navigation in male sprague-dawley rats. Neurotox Res. 2016;30:199–212.
  • Braun AA, Graham DL, Schaefer TL, Vorhees CV, Williams MT. Dorsal striatal dopamine depletion impairs both allocentric and egocentric navigation in rats. Neurobiol Learn Mem. 2012;97:402–08. doi:10.1016/j.nlm.2012.03.004.
  • Franca AS, Muratori L, Nascimento GC, Pereira CM, Ribeiro S, Lobao-Soares B. Object recognition impairment and rescue by a dopamine D2 antagonist in hyperdopaminergic mice. Behav Brain Res. 2016;308:211–16. doi:10.1016/j.bbr.2016.04.009.
  • Heysieattalab S, Naghdi N, Zarrindast MR, Haghparast A, Mehr SE, Khoshbouei H. The effects of GABAA and NMDA receptors in the shell-accumbens on spatial memory of METH-treated rats. Pharmacol Biochem Behav. 2016;142:23–35. doi:10.1016/j.pbb.2015.12.008.
  • Ikegami M, Uemura T, Kishioka A, Sakimura K, Mishina M. Striatal dopamine D1 receptor is essential for contextual fear conditioning. Sci Rep. 2014;4:3976. doi:10.1038/srep03976.
  • Ploeger GE, Spruijt BM, Cools AR. Effects of haloperidol on the acquisition of a spatial learning task. Physiol Behav. 1992;52:979–83. doi:10.1016/0031-9384(92)90380-K.
  • Wilkinson LS, Humby T, Killcross AS, Torres EM, Everitt BJ, Robbins TW. Dissociations in dopamine release in medial prefrontal cortex and ventral striatum during the acquisition and extinction of classical aversive conditioning in the rat. Eur J Neurosci. 1998;10:1019–26.
  • Bogdan R, Salmeron BJ, Carey CE, Agrawal A, Calhoun VD, Garavan H, Hariri AR, Heinz A, Hill MN, Holmes A, et al. Imaging genetics and genomics in psychiatry: A critical review of progress and potential. Biol Psychiatry. 2017;82:165–75. doi:10.1016/j.biopsych.2016.12.030.
  • Munafo MR. Understanding the candidate gene x environment interaction debate: epistemological or evidential divide? Int J Epidemiol. 2015;44:1130–32. doi:10.1093/ije/dyv056.
  • Avinun R, Nevo A, Knodt AR, Elliott ML, Hariri AR. Replication in imaging genetics: the case of threat-related amygdala reactivity. Biol Psychiatry. 2018;84:148–59. doi:10.1016/j.biopsych.2017.11.010.
  • Munafo MR, Davey Smith G. Robust research needs many lines of evidence. Nature. 2018;553:399–401. doi:10.1038/d41586-018-01023-3.
  • Bayer HM, Glimcher PW. Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron. 2005;47:129–41. doi:10.1016/j.neuron.2005.05.020.
  • Fiorillo CD, Tobler PN, Schultz W. Discrete coding of reward probability and uncertainty by dopamine neurons. Science. 2003;299:1898–902. doi:10.1126/science.1077349.
  • Schultz W, Dayan P, Montague PR. A neural substrate of prediction and reward. Science. 1997;275:1593–99. doi:10.1126/science.275.5306.1593.
  • Tobler PN, Fiorillo CD, Schultz W. Adaptive coding of reward value by dopamine neurons. Science. 2005;307:1642–45. doi:10.1126/science.1105370.
  • Brodie MS, Appel SB. Dopaminergic neurons in the ventral tegmental area of C57BL/6J and DBA/2J mice differ in sensitivity to ethanol excitation. Alcohol Clin Exp Res. 2000;24:1120–24.
  • Brodie MS, Shefner SA, Dunwiddie TV. Ethanol increases the firing rate of dopamine neurons of the rat ventral tegmental area in vitro. Brain Res. 1990;508:65–69. doi:10.1016/0006-8993(90)91118-z.
  • Schultz W. Responses of midbrain dopamine neurons to behavioral trigger stimuli in the monkey. J Neurophysiol. 1986;56:1439–61. doi:10.1152/jn.1986.56.5.1439.
  • Schultz W. Dopamine reward prediction error coding. Dialogues Clin Neurosci. 2016;18:23–32.
  • Schultz W. Dopamine reward prediction-error signalling: a two-component response. Nat Rev Neurosci. 2016;17:183–95. doi:10.1038/nrn.2015.26.
  • Wassum KM, Ostlund SB, Loewinger GC, Maidment NT. Phasic mesolimbic dopamine release tracks reward seeking during expression of Pavlovian-to-instrumental transfer. Biol Psychiatry. 2013;73:747–55. doi:10.1016/j.biopsych.2012.12.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.