321
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

The citrus flavanone naringenin prevents the development of morphine analgesic tolerance and conditioned place preference in male rats

, ORCID Icon, ORCID Icon & ORCID Icon
Pages 43-51 | Received 01 Jul 2019, Accepted 16 Aug 2020, Published online: 02 Oct 2020

References

  • Noble M, Treadwell JR, Tregear SJ, Coates VH, Wiffen PJ, Akafomo C, Schoelles KM. Long-term opioid management for chronic noncancer pain. Cochrane Database Syst Rev. 2010;CD006605. doi:10.1002/14651858.CD006605.. PMID: 20091598.
  • Trang T, Al-Hasani R, Salvemini D, Salter MW, Gutstein H, Cahill CM. Pain and Poppies: the Good, the Bad, and the Ugly of Opioid Analgesics. J Neurosci. 2015;35:13879–88. PMID: 6468188. doi:10.1523/JNEUROSCI.2711-15.2015.
  • Williams JT, Ingram SL, Henderson G, Chavkin C, von Zastrow M, Schulz S, Koch T, Evans CJ, Christie MJ, Dolphin AC. Regulation of µ -Opioid Receptors: desensitization, Phosphorylation, Internalization, and Tolerance. Pharmacol Rev. 2013;65:223–54. PMID: 23321159. doi:10.1124/pr.112.005942.
  • Liang DY, Li X, Clark JD. 5-hydroxytryptamine type 3 receptor modulates opioid-induced hyperalgesia and tolerance in mice. Anesthesiology. PMID: 21368652. 2011;114:1180–89. doi:10.1097/ALN.0b013e31820efb19.
  • Ozdemir E, Bagcivan I, Durmus N, Altun A, Gursoy S. The nitric oxide–cGMP signaling pathway plays a significant role in tolerance to the analgesic effect of morphine. Can J Physiol Pharmacol. PMID: 21326339. 2011;89:89–95. doi:10.1139/Y10-109.
  • Listos J, Łupina M, Talarek S, Mazur A, Orzelska-Gorka J, Kotlinska J. The mechanisms involved in morphine addiction: an overview. Int J Mol Sci. PMID: 31484312. 2019;20:4302. doi:10.3390/ijms20174302.
  • Shaham Y, Hope BT. The role of neuroadaptations in relapse to drug seeking. Nat Neurosci. 2005 Nov;8:1437–39. PMID: 16251983. doi:10.1038/nn1105-1437.
  • Cahill CM, Taylor AM. Neuroinflammation—a co-occurring phenomenon linking chronic pain and opioid dependence. Current Opinion in Behavioral Sciences. 2017;13:171–77. PMID: 16251983. doi:10.1016/j.cobeha.2016.12.003.
  • Lin CP, Lu DH. Role of neuroinflammation in opioid tolerance: translational evidence from human-to-rodent studies. Adv Exp Med Biol. 2018; 1099: 125–39. PMID: 16251983.
  • Wong CS, Hsu MM, Chou R, Chou YY, Tung CS. Intrathecal cyclooxygenase inhibitor administration attenuates morphine antinociceptive tolerance in rats. Br J Anaesth. PMID: 16251983. 2000;85:747–51. doi:10.1093/bja/85.5.747.
  • Powell KJ, Hosokawa A, Bell A, Sutak M, Milne B, Quirion R, Jhamandas K. Comparative effects of cyclo-oxygenase and nitric oxide synthase inhibition on the development and reversal of spinal opioid tolerance. Br J Pharmacol. 1999;127:631–44. PMID: 10401553. doi:10.1038/sj.bjp.0702587.
  • Hutchinson MR, Bland ST, Johnson KW, Rice KC, Maier SF, Watkins LR. Opioid-induced glial activation: mechanisms of activation and implications for opioid analgesia, dependence, and reward. ScientificWorldJournal. 2007;7:98–111. PMID: 17982582. doi:10.1100/tsw.2007.230.
  • Ward J, Rosenbaum C, Hernon C, McCurdy CR, Boyer EW. 2011 Dec 1. Herbal medicines for the management of opioid addiction: safe and effective alternatives to conventional pharmacotherapy? CNS Drugs. 25:999–1007. doi:10.2165/11596830-000000000-00000. PMID: 22133323.
  • Vafeiadou K, Vauzour D, Lee HY, Rodriguez-Mateos A, Williams RJ, Spencer JPE. The citrus flavanone naringenin inhibits inflammatory signalling in glial cells and protects against neuroinflammatory injury. Arch Biochem Biophys. 2009;484:100–09. PMID: 19467635. doi:10.1016/j.abb.2009.01.016.
  • Jaeger BN, Parylak SL, Gage FH. Mechanisms of dietary flavonoid action in neuronal function and neuroinflammation. Mol Aspects Med. 2018;61:50–62. PMID: 29117513. doi:10.1016/j.mam.2017.11.003.
  • Capasso A. The effect of flavonol glycosides on opiate withdrawal. Med Chem. 2007;3:327–31. PMID: 17627569. doi:10.2174/157340607781024401.
  • Rani N, Bharti S, Krishnamurthy B, Bhatia J, Sharma C, Kamal MA, Ojha S, Arya DS. Pharmacological Properties and Therapeutic Potential of Naringenin: A Citrus Flavonoid of Pharmaceutical Promise. Curr Pharm Des. 2016;22:4341–59. PMID: 27238365. doi:10.2174/1381612822666160530150936.
  • Saleh TM, Saleh MC, Connell BJ, Song Y-H. A co-drug conjugate of naringenin and lipoic acid mediates neuroprotection in a rat model of oxidative stress. Clin Exp Pharmacol Physiol. 2017;44:1008–16. PMID: 28636787. doi:10.1111/1440-1681.12799.
  • Feng X-Q, Zhu -L-L, Zhou Q. Opioid analgesics-related pharmacokinetic drug interactions: from the perspectives of evidence based on randomized controlled trials and clinical risk management. J Pain Res. 2017;10:1225–39. PMID: 28579821. doi:10.2147/JPR.S138698.
  • Okura T, Ozawa T, Ito Y, Kimura M, Kagawa Y, Yamada S. Enhancement by grapefruit juice of morphine antinociception.. Biol Pharm Bull. 2008;31:2338–41. PMID: 19043223. doi:10.1248/bpb.31.2338.
  • Nieminen TH, Hagelberg NM, Saari TI, Neuvonen M, Neuvonen PJ, Laine K, Olkkola KT. Grapefruit juice enhances the exposure to oral oxycodone.. Basic Clin Pharmacol Toxicol. 2008;31:2338–41. PMID: 20406214. doi:10.1248/bpb.31.2338.
  • Fuhr U, Klittich K, Staib AH. Inhibitory effect of grapefruit juice and its bitter principal, naringenin, on CYP1A2 dependent metabolism of caffeine in man.. Br J Clin Pharmacol. 1993;35:431–36. PMID: 8485024. doi:10.1111/j.1365-2125.1993.tb04162.x.
  • Smith HS. The metabolism of opioid agents and the clinical impact of their active metabolites. Clin J Pain. 2011;27:824–38. PMID: 21677572. doi:10.1097/AJP.0b013e31821d8ac1.
  • Gudin J. Opioid therapies and cytochrome p450 interactions. J Pain Symptom Manage. 2012;44:S4–14. PMID: 23218233. doi:10.1016/j.jpainsymman.2012.08.013.
  • Manchope MF, Calixto-Campos C, Coelho-Silva L, Zarpelon AC, Pinho-Ribeiro FA, Georgetti SR, Baracat MM, Casagrande R, Verri WA Jr. Naringenin inhibits superoxide anion-induced inflammatory pain: role of oxidative stress, cytokines, Nrf-2 and the NO-cGMP-PKG-KATP channel signaling pathway. PLoS One. 2016;11:e0153015. PMID: 27045367. doi:10.1371/journal.pone.0153015.
  • Ali R, Shahid A, Ali N, Hasan SK, Majed F, Sultana S. Amelioration of Benzo[a]pyrene-induced oxidative stress and pulmonary toxicity by Naringenin in Wistar rats: A plausible role of COX-2 and NF-κB.. Hum Exp Toxicol. 2012 Apr;44:S4–S14. PMID: 27206700. doi:10.1016/j.jpainsymman.2012.08.013.
  • D’Amour FE, Smith DL. A method for determining loss of pain sensation. J Pharmacol Exp Ther. 1941;72:74–79.
  • Darvishzadeh-Mahani F, Esmaeili-Mahani S, Komeili G, Sheibani V, Zare ZL. Ginger (Zingiber officinale Roscoe) prevents the development of morphine analgesic tolerance and physical dependence in rats. J Ethnopharmacol. 2012;141:901–07. PMID: 22472107. doi:10.1016/j.jep.2012.03.030.
  • Esmaeili-Mahani S, Ebrahimi B, Abbasnejad M, Rasoulian B, Sheibani V. Satureja khuzestanica prevents the development of morphine analgesic tolerance through suppression of spinal glial cell activation in rats. J Nat Med. 2015;69:165–70. PMID: 23943205. doi:10.1007/s11418-013-0796-6..
  • Torkzadeh-Mahani S, Nasri S, Esmaeili-Mahani E-MS. Ginger (zingiber officinale roscoe) prevents morphine-induced addictive behaviors in conditioned place preference test in rats.. Addiction & Health. 2014; 6: 65–72. PMID: 25140219.
  • Pinho-Ribeiro FA, Zarpelon AC, Fattori V, Manchope MF, Mizokami SS, Casagrande R, Verri WA Jr. Naringenin reduces inflammatory pain in mice. Neuropharmacology. 2016;105:508–19. PMID:26907804. doi:10.1016/j.neuropharm.2016.02.019.
  • Song P, Zhao ZQ. The involvement of glial cells in the development of morphine tolerance. Neurosci Res. 2001;39:281–86. PMID: 11248367. doi:10.1016/s0168-0102(00)00226-1.
  • Liu DQ, Zhou YQ, Gao F. Targeting cytokines for morphine tolerance: a narrative review. Curr Neuropharmacol. 2019;17:366–76. PMID: 29189168. doi:10.2174/1570159X15666171128144441.
  • Horvath RJ, DeLeo JA. Morphine enhances microglial migration through modulation of P2X4 receptor signaling. J Neurosci. 2009;29:998–1005. PMID: 19176808. doi:10.1523/JNEUROSCI.4595-08.2009.
  • Hol EM, Pekny M. Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system. Curr Opin Cell Biol. 2015;32:121–30. PMID: 25726916. doi:10.1016/j.ceb.2015.02.004.
  • Zhang L, Zhao W, Li B, Alkon DL, Barker JL, Chang YH, Wu M, Rubinow DR. TNF-alpha induced over-expression of GFAP is associated with MAPKs. Neuroreport. 2000;11:409–12. PMID: 10674496. doi:10.1097/00001756-200002070-00037.
  • Shen CH, Tsai RY, Wong CS. Role of neuroinflammation in morphine tolerance: effect of tumor necrosis factor-α. Acta Anaesthesiol Taiwan. 2012;50:178–82. PMID: 23385041. doi:10.1016/j.aat.2012.12.004.
  • Eidson LN, Inoue K, Young LJ, Tansey MG, Murphy AZ. Toll-like Receptor 4 Mediates Morphine-Induced Neuroinflammation and Tolerance via Soluble Tumor Necrosis Factor Signaling. Neuropsychopharmacology. 2017 Feb;42:661–70. PMID: 27461080. doi:10.1038/npp.2016.131.
  • Wu LH, Lin C, Lin HY, Liu YS, Wu CY, Tsai CF, Chang PC, Yeh WL, Lu DY. Naringenin Suppresses Neuroinflammatory Responses Through Inducing Suppressor of Cytokine Signaling 3 Expression. Mol Neurobiol. 2016;53:1080–91. PMID: 25579382. doi:10.1007/s12035-014-9042-9.
  • Khajevand-Khazaei M-R, Ziaee P, Motevalizadeh S-A, Rohani M, Afshin-Majd S, Baluchnejadmojarad T, Roghani M. 2018 May 5. Naringenin ameliorates learning and memory impairment following systemic lipopolysaccharide challenge in the rat. European Journal of Pharmacology. 826:114–22. doi:10.1016/j.ejphar.2018.03.001. PMID: 29518393.
  • Salehi B, Fokou PVT, Sharifi-Rad M, Zucca P, Pezzani R, Martins N, Sharifi-Rad J. The Therapeutic Potential of Naringenin: A Review of Clinical Trials. Pharmaceuticals (Basel). 2019;12:pii: E11. PMID:30634637. doi:10.3390/ph12010011.
  • Chtourou Y, Kamoun Z, Zarrouk W, Kebieche M, Kallel C, Gdoura R, Fetoui H. Naringenin ameliorates renal and platelet purinergic signalling alterations in high-cholesterol fed rats through the suppression of ROS and NF-κB signaling pathways. Food Funct. 2019;17:366–76. PMID: 26565065. doi:10.2174/1570159X15666171128144441.
  • Chen S, Ding Y, Tao W, Zhang W, Liang T, Liu C. Naringenin inhibits TNF-α induced VSMC proliferation and migration via induction of HO-1. Food Chem Toxicol. 2012;50:3025–31. PMID: 22709785. doi:10.1016/j.fct.2012.06.006.
  • Milani SA, Lloyd SL, Serdarevic M, Cottler LB, Striley CW. Gender differences in diversion among non-medical users of prescription opioids and sedatives. Am J Drug Alcohol Abuse. 2020Jan;14: 1–8.10.1080/00952990.2019.1708086.
  • Anglin MD, Hser Y-L, McGlothlin WH. Sex differences in addict careers. 2. Becoming addicted. Am J Drug Alcohol Abuse. 2018;826:59–71.doi:10.3109/00952998709001500.
  • Lynch WJ. Modeling the development of drug addiction in male and female animals. Pharmacology Biochemistry and Behavior. 2018;826:50–61. 10.1016/j.ejphar.2018.03.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.