89
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Association of drinking behaviors with TXNIP DNA methylation levels in leukocytes among the general Japanese population

ORCID Icon, , , ORCID Icon, , , , , , ORCID Icon, , , , & ORCID Icon show all
Pages 302-310 | Received 22 Sep 2021, Accepted 30 Jan 2022, Published online: 13 Apr 2022

References

  • Patwari P, Higgins LJ, Chutkow WA, Yoshioka J, Lee RT, et al. The interaction of thioredoxin with txnip. J Biol Chem. 2006;281:21884–91.
  • Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J, et al. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol. 2010;11:136–40.
  • Ferreira NE, Omae S, Pereira A, Rodrigues MV, Miyakawa AA, Campos LCG, Santos PCJL, Dallan LA, Martinez TL, Santos RD, et al. Thioredoxin interacting protein genetic variation is associated with diabetes and hypertension in the Brazilian general population. Atherosclerosis. 2012;221:131–36.
  • Kowluru RA, Mishra M. Contribution of epigenetics in diabetic retinopathy. Sci China Life Sci. 2015;58:556–63. doi:https://doi.org/10.1007/s11427-015-4853-0.
  • Chambers JC, Loh M, Lehne B, Drong A, Kriebel J, Motta V, Wahl S, Elliott HR, Rota F, Scott WR, et al. Epigenome-wide association of DNA methylation markers in peripheral blood from Indian Asians and Europeans with incident type 2 diabetes: a nested case-control study. Lancet Diabetes Endocrinol. 2015;3:526–34.
  • Florath I, Butterbach K, Heiss J, Bewerunge-Hudler M, Zhang Y, Schöttker B, Brenner H, et al. Type 2 diabetes and leucocyte DNA methylation: an epigenome-wide association study in over 1,500 older adults. Diabetologia. 2016;59:130–38.
  • Kulkarni H, Kos MZ, Neary J, Dyer TD, Kent JW, Göring HHH, Cole SA, Comuzzie AG, Almasy L, Mahaney MC, et al. Novel epigenetic determinants of type 2 diabetes in Mexican-American families. Hum Mol Genet. 2015;24:5330–44.
  • Soriano-Tárraga C, Jiménez-Conde J, Giralt-Steinhauer E, Mola-Caminal M, Vivanco-Hidalgo RM, Ois A, Rodríguez-Campello A, Cuadrado-Godia E, Sayols-Baixeras S, Elosua R, et al. Epigenome-wide association study identifies TXNIP gene associated with type 2 diabetes mellitus and sustained hyperglycemia. Hum Mol Genet. 2016;25:609–19.
  • Wang X, Han Y, Zhang S, Cui N-H, Liu Z-J, Huang Z-L, Li C, Zheng F, et al. Associations of polymorphisms inTXNIPand gene–environment interactions with the risk of coronary artery disease in a Chinese Han population. J Cell Mol Med. 2016;20:2362–73.
  • Rong J, Xu X, Xiang Y, Yang G, Ming X, He S, Liang B, Zhang X, Zheng F, et al. Thioredoxin-interacting protein promotes activation and inflammation of monocytes with DNA demethylation in coronary artery disease. J Cell Mol Med. 2020;24:3560–71.
  • Yamazaki M, Yamada H, Munetsuna E, Maeda K, Ando Y, Mizuno G, Fujii R, Tsuboi Y, Ohashi K, Ishikawa H, et al. DNA methylation level of the gene encoding thioredoxin-interacting protein in peripheral blood cells is associated with metabolic syndrome in the Japanese general population. Endocr J. [accessed 2021 Oct 14]. doi:https://doi.org/10.1507/endocrj.EJ21-0339. Epub ahead of print. Cited in: PMID: 34645728.
  • Nuotio ML, Pervjakova N, Joensuu A, Karhunen V, Hiekkalinna T, Milani L, Kettunen J, Järvelin M-R, Jousilahti P, Metspalu A, et al. An epigenome-wide association study of metabolic syndrome and its components. Sci Rep. 2020;10:20567.
  • Esteller M. Aberrant dna methylation as a cancer-inducing mechanism. Annu Rev Pharmacol Toxicol. 2005;45:629–56. doi:https://doi.org/10.1146/annurev.pharmtox.45.120403.095832.
  • Allione A, Marcon F, Fiorito G, Guarrera S, Siniscalchi E, Zijno A, Crebelli R, Matullo G, et al. Novel epigenetic changes unveiled by monozygotic twins discordant for smoking habits. Pellegrini M, editor. PLOS ONE. 2015;10:e0128265.
  • Fujii R, Yamada H, Munetsuna E, Yamazaki M, Ando Y, Mizuno G, Tsuboi Y, Ohashi K, Ishikawa H, Hagiwara C, et al. Associations between dietary vitamin intake, ABCA1 gene promoter DNA methylation, and lipid profiles in a Japanese population. Am J Clin Nutr. 2019;110:1213–19.
  • Gao X, Zhang Y, Breitling LP, Brenner H, et al. Tobacco smoking and methylation of genes related to lung cancer development. Oncotarget. 2016;7:59017–28.
  • Liu C, Marioni RE, Hedman ÅK, Pfeiffer L, Tsai P-C, Reynolds LM, Just AC, Duan Q, Boer CG, Tanaka T, et al. A DNA methylation biomarker of alcohol consumption. Mol Psychiatry. 2018;23:422–33.
  • Maeda K, Yamada H, Munetsuna E, Fujii R, Yamazaki M, Ando Y, Mizuno G, Ishikawa H, Ohashi K, Tsuboi Y, et al. Association of smoking habits with TXNIP DNA methylation levels in leukocytes among general Japanese population. Shimosawa T, editor. PLOS ONE. 2020;15:e0235486.
  • Okada Y, Momozawa Y, Sakaue S, Kanai M, Ishigaki K, Akiyama M, Kishikawa T, Arai Y, Sasaki T, Kosaki K, et al. Deep whole-genome sequencing reveals recent selection signatures linked to evolution and disease risk of Japanese. Nat Commun. 2018;9:1631.
  • Houshmand-Oeregaard A, Hjort L, Kelstrup L, Hansen NS, Broholm C, Gillberg L, Clausen TD, Mathiesen ER, Damm P, Vaag A, et al. DNA methylation and gene expression of TXNIP in adult offspring of women with diabetes in pregnancy. Thameem F, editor. PLOS ONE. 2017;12:e0187038.
  • Ezzati M, Lopez AD, Rodgers A, Murray, CJL. Comparative quantification of health risks: global and regional burden of disease attributable to selected major risk factors, Vol. 1. Geneva (Switzerland): World Health Organization; 2004. [accessed 2012 Jun 16]. https://apps.who.int/iris/handle/10665/42770 .
  • Seino Y, Nanjo K, Tajima N, Kadowaki T, Kashiwagi A, Araki E, Ito C, Inagaki N, Iwamoto Y, Kasuga M, et al. Report of the committee on the classification and diagnostic criteria of diabetes mellitus. J Diabetes Investig. 2010;1:212–28.
  • Van Der Weele T, Ding P. Sensitivity analysis in observational research: introducing the E-Value. Ann Intern Med. 2017;167:268–74. doi:https://doi.org/10.7326/M16-2607.
  • Valente S, Liu Y, Schnekenburger M, Zwergel C, Cosconati S, Gros C, Tardugno M, Labella D, Florean C, Minden S, et al. Selective non-nucleoside inhibitors of human DNA methyltransferases active in cancer including in cancer stem cells. J Med Chem. 2014;57:701–13.
  • Garro AJ, McBeth DL, Lima V, Lieber CS, et al. Ethanol consumption inhibits fetal DNA methylation in mice: implications for the fetal alcohol syndrome. Alcohol Clin Exp Res. 1991;15:395–98.
  • Bielawski DM, Zaher FM, Svinarich DM, Abel EL, et al. Paternal alcohol exposure affects sperm cytosine methyltransferase messenger RNA levels. Alcohol Clin Exp Res. 2002;26:347–51.
  • Bönsch D, Lenz B, Fiszer R, Frieling H, Kornhuber J, Bleich S, et al. Lowered DNA methyltransferase (DNMT-3b) mRNA expression is associated with genomic DNA hypermethylation in patients with chronic alcoholism. J Neural Transm. 2006;113:1299–304.
  • Lu SC, Mato JM. S-Adenosylmethionine in cell growth, apoptosis and liver cancer. J Gastroenterol Hepatol. 2008;23:S73–S77. doi:https://doi.org/10.1111/j.1440-1746.2007.05289.x.
  • Dugué PA, Wilson R, Lehne B, Jayasekara H, Wang X, Jung CH, Joo JE, Makalic E, Schmidt DF, Baglietto L, et al. Alcohol consumption is associated with widespread changes in blood DNA methylation: analysis of cross‐sectional and longitudinal data. Addict Biol. 2021;26:e12855.
  • Wilson LE, Xu Z, Harlid S, White AJ, Troester MA, Sandler DP, Taylor JA, et al. Alcohol and DNA methylation: an epigenome-wide association study in blood and normal breast tissue. Am J Epidemiol. 2019;188:1055–65.
  • Kim S-K, Choe J-Y, Park K-Y. Ethanol augments monosodium urate-induced NLRP3 inflammasome activation via regulation of AhR and TXNIP in human macrophages. Yonsei Med J. 2020;61:533. doi:https://doi.org/10.3349/ymj.2020.61.6.533.
  • Kim JY. Chronic alcohol consumption potentiates the development of diabetes through pancreatic β-cell dysfunction. World J Biol Chem. 2015;6:1.
  • Parikh H, Carlsson E, Chutkow WA, Johansson LE, Storgaard H, Poulsen P, Saxena R, Ladd C, Schulze PC, Mazzini MJ, et al. TXNIP regulates peripheral glucose metabolism in humans. In: Shulman GI, editor. PLoS Med. 2007;4:e158.
  • Koganebuchi K, Haneji K, Toma T, Joh K, Soejima H, Fujimoto K, Ishida H, Ogawa M, Hanihara T, Harada S, et al. The allele frequency of ALDH2*Glu504Lys and ADH1B*Arg47His for the Ryukyu islanders and their history of expansion among East Asians. Am J Human Biol. 2017;29:e22933.
  • Okada Y. eLD: entropy-based linkage disequilibrium index between multiallelic sites. Human Genome Variation. 2018;5:29.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.