211
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Male mice exposed to chronic intermittent ethanol exposure exhibit significant upregulation or downregulation of circular RNAs

, ORCID Icon, , , , , , & show all
Pages 562-572 | Received 18 Oct 2021, Accepted 30 Apr 2022, Published online: 15 Jul 2022

References

  • Gilpin NW, Koob GF. Neurobiology of alcohol dependence: focus on motivational mechanisms. Alcohol Res Heal. 2008;31:185–95.
  • Robinson G, Most D, Lb F, Mayfield J, Harris RA, Blednov YA. Neuroimmune pathways in alcohol consumption: evidence from behavioral and genetic studies in rodents and humans. Int Rev Neurobiol. 2014;118:13–39. 10.1016/B978-0-12-801284-0.00002-6.
  • Rachdaoui N, Sarkar DK. Pathophysiology of the effects of alcohol abuse on the endocrine system. Alcohol Res. 2017;38:255–76.
  • Trudell JR, Messing RO, Mayfield J, Harris RA. Alcohol dependence: molecular and behavioral evidence. Trends Pharmacol Sci. 2014;35:317–23. doi:10.1016/j.tips.2014.04.009.
  • Roberto M, Varodayan FP. Synaptic targets: chronic alcohol actions. Neuropharmacology. 2017;122:85–99. doi:10.1016/j.neuropharm.2017.01.013.
  • Guo JU, Agarwal V, Guo H, Bartel DP. Expanded identification and characterization of mammalian circular RNAs. Genome Biol. 2014;15:1–14. doi:10.1186/s13059-014-0409-z.
  • Jeck WR, Sharpless NE. Detecting and characterizing circular RNAs. Nat Biotechnol. 2014;32:452–61. doi:10.1038/nbt.2890.
  • Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495:333–38.
  • Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF, Sharpless NE. Circular RNAs are abundant, conserved, and associated with ALU repeats. Rna. 2013;19:141–57. doi:10.1261/rna.035667.112.
  • Li P, Chen S, Chen H, Mo X, Li T, Shao Y, Xiao B, Guo J. Using circular RNA as a novel type of biomarker in the screening of gastric cancer. Clin Chim Acta. 2015;444:132–36. doi:10.1016/j.cca.2015.02.018.
  • Li T, Shao Y, Fu L, Xie Y, Zhu L, Sun W, Yu R, Xiao B, Guo J. Plasma circular RNA profiling of patients with gastric cancer and their droplet digital RT-PCR detection. J Mol Med (Berl). 2018;96:85–96. doi:10.1007/s00109-017-1600-y.
  • Cui X, Niu W, Kong L, He M, Jiang K, Chen S, Zhong A, Li W, Lu J, Zhang L. Hsa-circRNA-103636: potential novel diagnostic and therapeutic biomarker in major depressive disorder. Biomark Med. 2016;10:943–52. doi:10.2217/bmm-2016-0130.
  • Mahmoudi E, Fitzsimmons C, Geaghan MP, Shannon Weickert C, Atkins JR, Wang X, Cairns MJ. Circular RNA biogenesis is decreased in postmortem cortical gray matter in schizophrenia and may alter the bioavailability of associated miRNA. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2019;44:1043–54. doi:10.1038/s41386-019-0348-1.
  • Zhuo C-J, Hou W-H, Jiang D-G, Tian H-J, Wang L-N, Jia F, Zhou C-H, Zhu J-J. Circular RNAs in early brain development and their influence and clinical significance in neuropsychiatric disorders. Neural Regen Res. 2020;15:817–23. doi:10.4103/1673-5374.268969.
  • Zhang Y, Du L, Bai Y, Han B, He C, Gong L, Huang R, Shen L, Chao J, Liu P, et al. CircDYM ameliorates depressive-like behavior by targeting miR-9 to regulate microglial activation via HSP90 ubiquitination. Mol Psychiatry. 2020;25:1175–90. doi:10.1038/s41380-018-0285-0.
  • Nimitvilai S, Lopez MF, Mulholland PJ, Woodward JJ. Ethanol dependence abolishes monoamine and GIRK (Kir3) channel inhibition of orbitofrontal cortex excitability. Neuropsychopharmacol off Publ Am Coll Neuropsychopharmacol. 2017;42:1800–12. doi:10.1038/npp.2017.22.
  • Samson HH. Initiation of ethanol reinforcement using a sucrose- substitution procedure in food- and water-sated rats. Alcohol Clin Exp Res. 1986;10:436–42. doi:10.1111/j.1530-0277.1986.tb05120.x.
  • Sinnott RS, Phillips TJ, Finn DA. Alteration of voluntary ethanol and saccharin consumption by the neurosteroid allopregnanolone in mice. Psychopharmacology (Berl). 2002;162:438–47. doi:10.1007/s00213-002-1123-1.
  • Griffin WC, Lopez MF, Yanke AB, Middaugh LD, Becker HC. Repeated cycles of chronic intermittent ethanol exposure in mice increases voluntary ethanol drinking and ethanol concentrations in the nucleus accumbens. Psychopharmacology (Berl). 2009;201:569–80. doi:10.1007/s00213-008-1324-3.
  • Becker HC, Lopez MF. Increased ethanol drinking after repeated chronic ethanol exposure and withdrawal experience in C57BL/6 mice. Alcohol Clin Exp Res. 2004;28:1829–38. doi:10.1097/01.alc.0000149977.95306.3a.
  • Lopez MF, Becker HC. Effect of pattern and number of chronic ethanol exposures on subsequent voluntary ethanol intake in C57BL/6J mice. Psychopharmacology (Berl). 2005;181:688–96. doi:10.1007/s00213-005-0026-3.
  • Gao Y, Wang J, Zhao F. CIRI: an efficient and unbiased algorithm for de novo circular RNA identification. Genome Biol. 2015;16:1–16. doi:10.1186/s13059-014-0571-3.
  • Wang L, Feng Z, Wang X, Wang X, Zhang X. Degseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics. 2010;26:136–38. doi:10.1093/bioinformatics/btp612.
  • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi:10.1186/s13059-014-0550-8.
  • Korthauer K, Kimes PK, Duvallet C, Reyes A, Subramanian A, Teng M, Shukla C, Alm EJ, Hicks SC. A practical guide to methods controlling false discoveries in computational biology. Genome Biol. 2019;20:118. doi:10.1186/s13059-019-1716-1.
  • Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc Natl Acad Sci U S a. 2003;100:9440–45. doi:10.1073/pnas.1530509100.
  • Gong Z, Zhao S, Zhang J, Xu X, Guan W, Jing L, Liu P, Lu J, Teng J, Peng T, et al. Initial research on the relationship between let-7 family members in the serum and massive cerebral infarction. J Neurol Sci. 2016;361:150–57.
  • Venø MT, Hansen TB, Venø ST, Clausen BH, Grebing M, Finsen B, Holm IE, Kjems J. Spatio-Temporal regulation of circular RNA expression during porcine embryonic brain development. Genome Biol. 2015;16:1–17. doi:10.1186/s13059-015-0801-3.
  • Zheng Q, Bao C, Guo W, Li S, Chen J, Chen B, Luo Y, Lyu D, Li Y, Shi G, et al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRnas. Nat Commun. 2016;7:1–13. doi:10.1038/ncomms11215.
  • Du WW, Yang W, Chen Y, Wu ZK, Foster FS, Yang Z, Li X, Yang BB. Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. Eur Heart J. 2017;38:1402–12. doi:10.1093/eurheartj/ehw001.
  • Ng WL, Marinov GK, Liau ES, Lam YL, Lim YY, Ea CK. Inducible RasGEF1B circular RNA is a positive regulator of ICAM-1 in the TLR4/LPS pathway. RNA Biol. 2016;13:861–71. doi:10.1080/15476286.2016.1207036.
  • Liang G, Liu Z, Tan L, Su A, Jiang WG, Gong C. HIF1α-Associated circDennd4c promotes proliferation of breast cancer cells in hypoxic environment. Anticancer Res. 2017;37:4337–43. doi:10.21873/anticanres.11827.
  • Guarnerio J, Bezzi M, Jeong JC, Paffenholz SV, Berry K, Naldini MM, Lo-Coco F, Tay Y, Beck AH, Pandolfi PP. Oncogenic role of fusion-circRNAs derived from cancer-associated chromosomal translocations. Cell. 2016;165:289–302. doi:10.1016/j.cell.2016.03.020.
  • Piwecka M, Glažar P, Hernandez-Miranda LR, Memczak S, Wolf SA, Rybak-Wolf A, Filipchyk A, Klironomos F, Jara CAC, Fenske P, et al. Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science. 2017;80-:357.
  • Holdt LM, Stahringer A, Sass K, Pichler G, Kulak NA, Wilfert W, Kohlmaier A, Herbst A, Northoff BH, Nicolaou A, et al. Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat Commun. 2016;7:12429. doi:10.1038/ncomms12429.
  • Shan K, Liu C, Liu BH, Chen X, Dong R, Liu X, Zhang YY, Liu B, Zhang SJ, Wang JJ, et al. Circular noncoding RNA HIPK3 mediates retinal vascular dysfunction in diabetes mellitus. Circulation. 2017;136:1629–42. doi:10.1161/CIRCULATIONAHA.117.029004.
  • Rodgers DA, McClearn GE. Mouse strain differences in preference for various concentrations of alcohol. Q J Stud Alcohol. 1962;23:26–33. doi:10.15288/qjsa.1962.23.026.
  • Grahame NJ, Li T, Lumeng L. Selective breeding for high and low alcohol preference in mice. Behav Genet. 1999;29:47–57. doi:10.1023/a:1021489922751.
  • Robinson DL, Amodeo LR, Chandler LJ, Crews FT, Ehlers CL, Gómez-A A, Healey KL, Kuhn CM, Macht VA, Marshall SA, et al. The role of sex in the persistent effects of adolescent alcohol exposure on behavior and neurobiology in rodents. Int Rev Neurobiol. 2021;160:305–40.
  • Karkhanis AN, Rose JH, Huggins KN, Konstantopoulos JK, Jones SR. Chronic intermittent ethanol exposure reduces presynaptic dopamine neurotransmission in the mouse nucleus accumbens. Drug Alcohol Depend. 2015;150:24–30. doi:10.1016/j.drugalcdep.2015.01.019.
  • Sizer SE, Parrish BC, McCool BA. Chronic ethanol exposure potentiates cholinergic neurotransmission in the basolateral amygdala. Neuroscience. 2021;455:165–76. doi:10.1016/j.neuroscience.2020.12.014.
  • Parsons LH, Hurd YL. Endocannabinoid signalling in reward and addiction. Nat Rev Neurosci. 2015;16:579–94. doi:10.1038/nrn4004.
  • Covey DP, Wenzel JM, Cheer JF. Cannabinoid modulation of drug reward and the implications of marijuana legalization. Brain Res. 2015;1628:233–43. doi:10.1016/j.brainres.2014.11.034.
  • Bahn JH, Zhang Q, Li F, Chan T-M, Lin X, Kim Y, Wong DTW, Xiao X. The landscape of microRNA, Piwi-interacting RNA, and circular RNA in human saliva. Clin Chem. 2015;61:221–30. doi:10.1373/clinchem.2014.230433.
  • Heinbockel T, Wang Z. Cellular mechanisms of action of drug abuse on olfactory neurons. Int J Env Res Public Heal. 2015;13. doi:10.3390/ijerph13010005.
  • Sidhpura N, Parsons LH. Endocannabinoid-Mediated synaptic plasticity and addiction-related behavior. Neuropharmacology. 2011;61:1070–87. doi:10.1016/j.neuropharm.2011.05.034.
  • Lovinger DM. Presynaptic ethanol actions : potential roles in ethanol seeking. Handb Exp Pharmacol. 2018;248:29–54. doi:10.1007/164_2017_76.
  • Turu G, Hunyady L. Signal transduction of the CB1 cannabinoid receptor. J Mol Endocrinol. 2010;44:75–85. doi:10.1677/JME-08-0190.
  • Venø MT, Hansen TB, Venø ST, Clausen BH, Grebing M, Finsen B, Holm IE, Kjems J. Spatio-Temporal regulation of circular RNA expression during porcine embryonic brain development. Genome Biol. 2015;16:245.
  • Enuka Y, Lauriola M, Feldman ME, Sas-Chen A, Ulitsky I, Yarden Y. Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor. Nucleic Acids Res. 2016;44:1370–83. doi:10.1093/nar/gkv1367.
  • Li S, Sun X, Miao S, Lu T, Wang Y, Liu J, Jiao W. Hsa _ circ _ 0000729, a potential prognostic biomarker in lung adenocarcinoma. Thorac Cancer. 2018;9:924–30. doi:10.1111/1759-7714.12761.
  • Bolha L, Ravnik-Glavač M, Glavač D. Circular RNAs: biogenesis, function, and a role as possible cancer biomarkers. Int J Genomics. 2017;2017:2017. doi:10.1155/2017/6218353.
  • Cardamone G, Paraboschi EM, Rimoldi V, Duga S, Soldà G, Asselta R. The characterization of GSDMB splicing and backsplicing profiles identifies novel isoforms and a circular RNA that are dysregulated in multiple sclerosis. Int J Mol Sci. 2017;18:576. doi:10.3390/ijms18030576.
  • Zheng F, Yu X, Huang J, Dai Y. Circular RNA expression profiles of peripheral blood mononuclear cells in rheumatoid arthritis patients, based on microarray chip technology. Mol Med Rep. 2017;16:8029–36. doi:10.3892/mmr.2017.7638.
  • Zhao M, Gao F, Zhang D, Wang S, Zhang Y, Wang R, Zhao J. Altered expression of circular RNAs in Moyamoya disease. J Neurol Sci. 2017;381:25–31. doi:10.1016/j.jns.2017.08.011.
  • Bazan HA, Hatfield SA, Brug A, Brooks AJ, Lightell DJ, Woods TC. Carotid plaque rupture is accompanied by an increase in the ratio of serum circR-284 to miR-221 levels. Circ Cardiovasc Genet. 2017;10. doi:10.1161/CIRCGENETICS.117.001720.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.