342
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Cannabidiol attenuates methamphetamine-induced conditioned place preference in male rats and viability in PC12 cells through the Sigma1R/AKT/GSK3β/CREB signaling pathway

, , , , , , , , , , , , & show all
Pages 548-561 | Received 23 Nov 2021, Accepted 30 Apr 2022, Published online: 26 Jul 2022

References

  • Teixeira‐gomes A, Costa VM, Feio‐azevedo R, de Lourdes Bastos M, Carvalho F, Capela JP. The neurotoxicity of amphetamines during the adolescent period. Int J Dev Neurosci. 2015;41:44–62. doi:10.1016/j.ijdevneu.2014.12.001.
  • Vrajová M, Šlamberová R, Hoschl C, Ovsepian SV. Methamphetamine and sleep impairments: neurobehavioral correlates and molecular mechanisms. Sleep. 2021;44:zsab001. doi:10.1093/sleep/zsab001.
  • Kim S, Jang WJ, Yu H, Kim J, Lee SK, Jeong CH, Lee S. Revealing metabolic perturbation following heavy methamphetamine abuse by human hair metabolomics and network analysis. IJMS. 2020;21:6041. doi:10.3390/ijms21176041.
  • Xu X, Ding X, Chen L, Chen T, Su H, Li X, Ye Y, Shi W, Ji J, Zhao M, et al. The transcranial direct current stimulation over prefrontal cortex combined with the cognitive training reduced the cue-induced craving in female individuals with methamphetamine use disorder: a randomized controlled trial. J Psychiatr Res. 2021;134:102–10. doi:10.1016/j.jpsychires.2020.12.056.
  • Karimi-Haghighi S, Haghparast A. Cannabidiol inhibits priming-induced reinstatement of methamphetamine in REM sleep deprived rats. Prog Neuropsychopharmacol Biol Psychiatry. 2018;82:307–13. doi:10.1016/j.pnpbp.2017.08.022.
  • Leonard MZ, Rostin P, Hill KP, Grabitz SD, Eikermann M, Miczek KA. The molecular-container calabadion-2 prevents methamphetamine-induced reinstatement in rats: a potential approach to relapse prevention? Int J Neuropsychopharmacol. 2020;23:401–05. doi:10.1093/ijnp/pyz070.
  • Pittenger ST, Chou S, Murawski NJ, Barrett ST, Loh O, Duque JF, Li M, Bevins RA. Female rats display higher methamphetamine-primed reinstatement and c-Fos immunoreactivity than male rats. Pharmacol Biochem Behav. 2021;201:173089. doi:10.1016/j.pbb.2020.173089.
  • Chao J, Zhang Y, Du L, Zhou R, Wu X, Shen K, Yao H. Molecular mechanisms underlying the involvement of the sigma-1 receptor in methamphetamine-mediated microglial polarization. Sci Rep. 2017;7:11540. doi:10.1038/s41598-017-11065-8.
  • Nguyen EC, McCracken KA, Liu Y, Pouw B, Matsumoto RR. Involvement of sigma (σ) receptors in the acute actions of methamphetamine: receptor binding and behavioral studies. Neuropharmacology. 2005;49:638–45. doi:10.1016/j.neuropharm.2005.04.016.
  • Stefanski R, Justinova Z, Hayashi T, Takebayashi M, Goldberg SR, Su TP. Sigma1 receptor upregulation after chronic methamphetamine self-administration in rats: a study with yoked controls. Psychopharmacology. 2004;175:175. doi:10.1007/s00213-004-1779-9.
  • Cao L, Walker MP, Vaidya NK, Fu M, Kumar S, Kumar A. Cocaine-Mediated autophagy in astrocytes involves sigma 1 receptor, PI3K, m-TOR, Atg5/7, Beclin-1 and induces Type II programed cell death. Mol Neurobiol. 2016;53:4417–30. doi:10.1007/s12035-015-9377-x.
  • Navarro G, Moreno E, Aymerich M, Marcellino D, McCormick PJ, Mallol J, Cortés A, Casadó V, Canela EI, Ortiz J, et al.Direct involvement of σ-1 receptors in the dopamine D1 receptor-mediated effects of cocaine. Proc Natl Acad Sci USA. 2010;107:18676–81. doi:10.1073/pnas.1008911107.
  • Rodríguez-Muñoz M, Onetti Y, Cortés-Montero E, Garzón J, Sánchez-Blázquez P. Cannabidiol enhances morphine antinociception, diminishes NMDA-mediated seizures and reduces stroke damage via the sigma 1 receptor. Mol Brain. 2018;11:51. doi:10.1186/s13041-018-0395-2.
  • Hedges DM, Obray JD, Yorgason JT, Jang EY, Weerasekara VK, Uys JD, Bellinger FP, Steffensen SC. Methamphetamine induces dopamine release in the nucleus accumbens through a sigma receptor-mediated pathway. Neuropsychopharmacology. 2018;43:1405–14. doi:10.1038/npp.2017.291.
  • Hong SI, Kim MJ, You IJ, Kwon SH, Ma SX, Hwang JY, Seo JY, Ko YH, Lee BR, Lee SY, et al. Phentermine induces conditioned rewarding effects via activation of the PI3K/Akt signaling pathway in the nucleus accumbens. Psychopharmacology. 2016;233:1405–13. doi:10.1007/s00213-016-4231-z.
  • Qiao X, Gai H, Su R, Deji C, Cui J, Lai J, Zhu Y. PI3K-AKT-GSK3β-CREB signaling pathway regulates anxiety-like behavior in rats following alcohol withdrawal. J Affect Disord. 2018;235:96–104. doi:10.1016/j.jad.2018.04.039.
  • Yao H, Yang Y, Kim KJ, Bethel-Brown C, Gong N, Funa K, Gendelman HE, Su TP, Wang JQ, Buch S. Molecular mechanisms involving sigma receptor–mediated induction of MCP-1: implication for increased monocyte transmigration. Blood. 2010;115:4951–62. doi:10.1182/blood-2010-01-266221.
  • Hurd YL, Spriggs S, Alishayev J, Winkel G, Gurgov K, Kudrich C, Oprescu AM, Salsitz E. Cannabidiol for the reduction of cue-induced craving and anxiety in drug-abstinent individuals with heroin use disorder: a double-blind randomized placebo-controlled trial. Am J Psychiatry. 2019;176:911–22. doi:10.1176/appi.ajp.2019.18101191.
  • Chaves YC, Genaro K, Crippa JA, JM da Cunha, Zanoveli JM. Cannabidiol induces antidepressant and anxiolytic‐like effects in experimental type-1 diabetic animals by multiple sites of action. Metab Brain Dis. 2021;36:639–52. doi:10.1007/s11011-020-00667-3.
  • Sales AJ, Crestani CC, Guimarães FS, Joca SRL. Antidepressant-Like effect induced by Cannabidiol is dependent on brain serotonin levels. Prog Neuropsychopharmacol Biol Psychiatry. 2018;86:255–61. doi:10.1016/j.pnpbp.2018.06.002.
  • García-Gutiérrez MS, Navarrete F, Gasparyan A, Austrich-Olivares A, Sala F, Manzanares J. Cannabidiol: a potential new alternative for the treatment of anxiety, depression, and psychotic disorders. Biomolecules. 2020;10:1575. doi:10.3390/biom10111575.
  • Karimi‐haghighi S, Dargahi L, Haghparast A. Cannabidiol modulates the expression of neuroinflammatory factors in stress‐ and drug‐induced reinstatement of methamphetamine in extinguished rats. Addict Biol. 2020;25. doi:10.1111/adb.12740.
  • Sunda F, Arowolo A. A molecular basis for the anti‐inflammatory and anti‐fibrosis properties of cannabidiol. FASEB J. 2020;34:14083–92. doi:10.1096/fj.202000975R.
  • De Ternay J, Naassila M, Nourredine M, Louvet A, Bailly F, Sescousse G, Maurage P, Cottencin O, Carrieri PM, Rolland B. Therapeutic prospects of cannabidiol for alcohol use disorder and alcohol-related damages on the liver and the brain. Front Pharmacol. 2019;10:627. doi:10.3389/fphar.2019.00627.
  • Shayesteh MRH, Haghi-Aminjan H, Mousavi MJ, Momtaz S, Abdollahi M. The protective mechanism of cannabidiol in cardiac injury: a systematic review of non-clinical studies. Curr Pharm Des. 2019;25:2499–507. doi:10.2174/2210327909666190710103103.
  • Dash R, Ali MC, Jahan I, Munni YA, Mitra S, Hannan MA, Timalsina B, Oktaviani DF, Choi HJ, Moon IS. Emerging potential of cannabidiol in reversing proteinopathies. Ageing Res Rev. 2021;65:101209. doi:10.1016/j.arr.2020.101209.
  • Leszko M, Meenrajan S. Attitudes, beliefs, and changing trends of cannabidiol (CBD) oil use among caregivers of individuals with Alzheimer’s disease. Complement Ther Med. 2021;57:102660. doi:10.1016/j.ctim.2021.102660.
  • Cassano T, Villani R, Pace L, Carbone A, Bukke VN, Orkisz S, Avolio C, Serviddio G. From cannabis sativa to cannabidiol: promising therapeutic candidate for the treatment of neurodegenerative diseases. Front Pharmacol. 2020;11:124. doi:10.3389/fphar.2020.00124.
  • Junior NCF, dos-Santos-Pereira M, Guimarães FS, Del Bel E. Cannabidiol and cannabinoid compounds as potential strategies for treating Parkinson’s disease and l-DOPA-induced dyskinesia. Neurotox Res. 2020;37:12–29. doi:10.1007/s12640-019-00109-8.
  • Patricio F, Morales-Andrade AA, Patricio-Martínez A, Limón ID. Cannabidiol as a therapeutic target: evidence of its neuroprotective and neuromodulatory function in Parkinson’s disease. Front Pharmacol. 2020;11:595635. doi:10.3389/fphar.2020.595635.
  • Morgan CJA, Freeman TP, Hindocha C, Schafer G, Gardner C, Curran HV. Individual and combined effects of acute delta-9-tetrahydrocannabinol and cannabidiol on psychotomimetic symptoms and memory function. Transl Psychiatry. 2018;8:181. doi:10.1038/s41398-018-0191-x.
  • Hay GL, Baracz SJ, Everett NA, Roberts J, Costa PA, Arnold JC, McGregor IS, Cornish JL. Cannabidiol treatment reduces the motivation to self-administer methamphetamine and methamphetamine-primed relapse in rats. J Psychopharmacol. 2018;32:1369–78. doi:10.1177/0269881118799954.
  • Yang G, Liu L, Zhang R, Li J, Leung CK, Huang J, Li Y, Shen B, Zeng X, Zhang D. Cannabidiol attenuates methamphetamine-induced conditioned place preference via the Sigma1R/AKT/GSK-3β/CREB signaling pathway in rats. Toxicol Res (Camb). 2020;9:202–11. doi:10.1093/toxres/tfaa021.
  • Sun L, Song R, Chen Y, Yang RF, Wu N, Su RB, Li J. A selective D3 receptor antagonist YQA14 attenuates methamphetamine-induced behavioral sensitization and conditioned place preference in mice. Acta Pharmacol Sin. 2016;37:157–65. doi:10.1038/aps.2015.96.
  • Fu K, Lin H, Miyamoto Y, Wu C, Yang J, Uno K, Nitta A. Pseudoginsenoside-F11 inhibits methamphetamine-induced behaviors by regulating dopaminergic and GABAergic neurons in the nucleus accumbens. Psychopharmacology. 2016;233:831–40. doi:10.1007/s00213-015-4159-8.
  • Anooshe M, Nouri K, Karimi-Haghighi S, Mousavi Z, Haghparast A. Cannabidiol efficiently suppressed the acquisition and expression of methamphetamine-induced conditioned place preference in the rat. Behav Brain Res. 2021;404:113158. doi:10.1016/j.bbr.2021.113158.
  • Gonzalez-Cuevas G, Martin-Fardon R, Kerr TM, Stouffer DG, Parsons LH, Hammell DC, Banks SL, Stinchcomb AL, Weiss F. Unique treatment potential of cannabidiol for the prevention of relapse to drug use: preclinical proof of principle. Neuropsychopharmacology. 2018;43:2036–45. doi:10.1038/s41386-018-0050-8.
  • de Carvalho CR, Takahashi RN. Cannabidiol disrupts the reconsolidation of contextual drug-associated memories in Wistar rats: CBD impairs CPP and CPA. Addict Biol. 2017;22:742–51. doi:10.1111/adb.12366.
  • Crippa JA, Hallak JE, Machado-de-Sousa JP, Queiroz RH, Bergamaschi M, Chagas MH, Zuardi AW. Cannabidiol for the treatment of cannabis withdrawal syndrome: a case report: CBD and cannabis withdrawal. J Clin Pharm Ther. 2013;38:162–64. doi:10.1111/jcpt.12018.
  • Aguinaga D, Medrano M, Vega-Quiroga I, Gysling K, Canela EI, Navarro G, Franco R. Cocaine effects on dopaminergic transmission depend on a balance between Sigma-1 and Sigma-2 receptor expression. Front Mol Neurosci. 2018;11:17. doi:10.3389/fnmol.2018.00017.
  • Soriani O, Kourrich S. The Sigma-1 receptor: when adaptive regulation of cell electrical activity contributes to stimulant addiction and cancer. Front Neurosci. 2019;13:1186. doi:10.3389/fnins.2019.01186.
  • Delint-Ramirez I, Garcia-Oscos F, Segev A, Kourrich S. Cocaine engages a non-canonical, dopamine-independent, mechanism that controls neuronal excitability in the nucleus accumbens. Mol Psychiatry. 2020;25:680–91. doi:10.1038/s41380-018-0092-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.