355
Views
33
CrossRef citations to date
0
Altmetric
Original Articles

MODIFIED PLANTAIN PEEL AS CELLULOSE-BASED LOW-COST ADSORBENT FOR THE REMOVAL OF 2,6-DICHLOROPHENOL FROM AQUEOUS SOLUTION: ADSORPTION ISOTHERMS, KINETIC MODELING, AND THERMODYNAMIC STUDIES

, &
Pages 1121-1147 | Published online: 10 Apr 2013

References

  • Achak , M. , Hafidi , A. , Ouazzani , N. , Sayadi , S. , and Mandi , L. ( 2009 ). Low cost biosorbent “banana peel” for the removal of phenolic compounds from olive mill wastewater: Kinetic and equilibrium studies , J. Hazard. Mater. , 166 ( 1 ), 117 – 125 .
  • Adebowale , K. O. , and Bayer , E. ( 2002 ). Active carbons from low temperature conversion chars , Electron. J. Environ. Agric. Food Chem. , 7 ( 11 ), 3304 – 3315 .
  • Adeyi , O. ( 2010 ). Proximate composition of some agricultural wastes in Nigeria and their potential use in activated carbon production , J. Appl. Sci. Environ. Manag. , 14 ( 1 ), 55 – 58 .
  • Agarry , S. E. , and Aremu , M. O. ( 2012b ). Batch equilibrium and kinetic studies of simultaneous adsorption and biodegradation of phenol by pineapple peels immobilized Pseudomonas aeruginosa NCIB 950 , Br. Biotechnol. J. , 2 ( 1 ), 26 – 48 .
  • Agarry , S. E. , and Aremu , M. O. (2012a). Batch equilibrium and kinetic studies of simultaneous adsorption and biodegradation of naphthalene by orange peels immobilized Pseudomonas aeruginosa NCIB 950, J. Bioremed. Biodegrad. , 3(2), 138–141.
  • Agency for Toxic Substance, and Disease Registry . ( 1999 ). Toxicological Profile for Chlorophenols, U.S. Department of Health and Human Services, Public Health Service, Atlanta .
  • Akar , S. T. , Ozcan , A. S. , Akar , T. , Ozcan , A. , and Kaynak , Z. ( 2009 ). Biosorption of a reactive textile dye from aqueous solutions utilizing an agro-waste , Desalination , 249 ( 2 ), 757 – 761 .
  • Anderson , J. M. , and Ingram , J. S. , eds. ( 1979 ). Tropical Soil Biology and Fertility: A Handbook of Methods , CAB , UK .
  • Anirudhan , T. S. , and Radhakrishnan , P. G. ( 2008 ). Thermodynamics and kinetics of adsorption of Cu (II) from aqueous solutions onto a new cation exchanger derived from tamarind fruit shell , J. Chem. Thermodyn. , 40 ( 4 ), 702 – 709 .
  • Annachhatre , A. P. , and Gheewala , S. H. ( 1996 ). Biodegradation of chlorinated phenolic compounds , Biotechnol. Adv. , 14 , 35 – 56 .
  • Annadurai , G. , Chellapandian , M. , and Krishnan , M. R. V. ( 1997 ). Adsorption of basic dye from aqueous solution by chitosan: Equilibrium studies , Indian J. Environ. Prot. , 17 , 95 – 98 .
  • Annadurai , A. , Babu , S. R. , Mahesh , K. P. O. , and Murugesan , T. ( 2000 ). Adsorption and biodegradation of phenol by chitosan-immobilized Pseudomonas putida (NICM 2174) , Bioprocess Eng. , 2 , 493 – 501 .
  • Annadurai , G. , Juang , R. S. , and Lee , D. J. ( 2002 ). Adsorption of heavy metal from water using banana and orange peels , Water Sci. Technol. , 47 , 185 – 190 .
  • Armenante , P. M. , Kafkewitz , D. , Lewandowski , G. A. , and Jou , C. J. ( 1999 ). Anaerobic–aerobic treatment of halogenated phenolic compounds , Water Res. , 33 , 681 – 692 .
  • Badmus , M. A. O. , Audu , T. O. K. , and Anyata , B. U. ( 2007 ). Removal of lead ion from industrial wastewaters by activated carbon prepared from periwinkle shells (Typanotonus fuscatus) , Turk. J. Eng. Environ. Sci. , 31 ( 4 ), 251 – 263 .
  • Bae , H. , Yamagishi , T. , and Suwa , Y. ( 2002 ). Evidence for degradation of 2-chlorophenol by enrichment cultures under denitrifying conditions , Microbiology , 148 , 221 – 227 .
  • Baek , M. H. , Ijagbemi , C. O. , Se-Jin , O. , and Kim , D. S. ( 2010 ). Removal of Malachite Green from aqueous solution using degreased coffee bean , J. Hazard. Mater. , 176 ( 1–3 ), 820 – 828 .
  • Bajpai , S. K. , and Tankhiwale , R. ( 2008 ). Preparation, characterization and preliminary calcium release study of floating sodium alginate/dextran-based hydrogel beads: Part I , Polym. Int. , 57 , 57 – 65 .
  • Barbour , J. P. , Smith , J. A. , and Chiou , C. T. ( 2005 ). Sorption of aromatic organic pollutants to grasses from water , Environ. Sci. Technol. , 39 , 8369 – 8373 .
  • Boyd , G. E. , Adamson , A. W. , and Myers , L. S. ( 1947 ). The exchange adsorption of ions from aqueous solutions by organic zeolites. II. Kinetics , J. Am. Chem. Soc. , 69 ( 11 ), 2836 – 2848 .
  • Chaliha , S. , and Bhattacharyya , K. G. ( 2008 ). Catalytic wet oxidation of 2-chlorophenol, 2,4-dichlorophenol and 2,4,6-trichlorophenol in water with Mn (II)-MCM41 , Chem. Eng. J. , 139 , 575 – 588 .
  • Chen , A.-H. , and Chen , S.-M. ( 2009 ). Biosorption of azo dyes from aqueous solution by glutaraldehyde-crosslinked chitosans , J. Hazard. Mater. , 172 , 1111 – 1121 .
  • Chen , B. , and Schnoor , J. L. ( 2009 ). Role of suberin, suberan, and hemicellulose in phenanthrene sorption by root tissue fractions of switch grass (Panicum virhatum) , Environ. Sci. Technol. , 43 , 4130 – 4136 .
  • Chen , Z. , Ma , W. , and Han , M. ( 2008 ). Biosorption of nickel and copper onto treated alga (Undaria pinnatifida): Application of isotherm and kinetic models , J. Hazard. Mater. , 155 ( 1–2 ), 327 – 333 .
  • Chen , B. , Yuana , M. , and Liu , H. ( 2011 ). Removal of polycyclic aromatic hydrocarbons from aqueous solution using plant residue materials as a biosorbent , J. Hazard Mater. , 188 , 436 – 442 .
  • Chien , S. H. , and Clayton , W. R. ( 1980 ). Application of Elovich equation to the kinetics of phosphate release and sorption in soils , Am. J. Soil Sci. Soc. , 44 , 265 – 268 .
  • Crini , G. , Peindy , H. N. , Gimbert , F. , and Robert , C. (2007). Removal of C.I. Basic Green 4 (Malachite Green) from aqueous solutions by adsorption using cyclodextrin based adsorbent: Kinetic and equilibrium studies, Sep. Purif. Technol. , 53(1), 97–110.
  • Crisafully , R. , Milhome , M. A. , Cavalcante , R. M. , Silveira , E. R. , Keukeleire , D. , and Nascimento , F. ( 2008 ). Removal of some polycyclic aromatic hydrocarbons from petrochemical waste water using low-cost adsorbents of natural origin , Bioresour. Technol. , 99 , 4515 – 4519 .
  • Dabhade , M. A. , Saidutta , M. B. , and Murthy , D. V. R. ( 2009 ). Adsorption of phenol on granular activated carbon from nutrient medium: Equilibrium and kinetic study , Int. J. Environ. Res. , 3 ( 4 ), 557 – 568 .
  • Das , B. , and Mondal , N. K. ( 2011 ). Calcareous soil as a new adsorbent to remove lead from aqueous solution: Equilibrium, kinetic and thermodynamic study , Universal J. Environ. Res. Technol. , 1 ( 4 ), 515 – 530 .
  • Devipriya , S. P. , and Yesodharan , S. ( 2010 ). Photocatalytic degradation of phenol in water using TiO2 and ZnO , J. Environ. Biol. , 31 , 247 – 249 .
  • Dubinin , M. M. , Zaverina , E. D. , and Radushkevich , L. V. ( 1947 ). Sorption and structure of active carbons: Adsorption of organic vapors , J. Phys. Chem. , 21 , 1351 – 1362 .
  • Elkarmi , A. Z. , Abu-Elteen , K. H. , Atta , A. A. , and Abu-Sbitan , N. A. ( 2009 ). Biodegradation of 2,4-dichlorophenol originating from pharmaceutical industries , Afr. J. Biotechnol. , 8 ( 11 ), 2558 – 2564 .
  • Fan , M. , Boonfueng , T. , Xu , Y. , Axe , L. , and Tayson , T. A. ( 2004 ). Modeling Pb sorption to microporous amorphous oxides as discrete particles and coatings , J. Colloid Interface Sci. , 281 , 39 – 48 .
  • Fattahi , N. , Assadi , Y. , and Hosaseini , M. R. ( 2007 ). Determination of chlorophenol in water sample using simultaneous dispersive liquid-liquid microextraction and derivatization followed by gas chromatography-electron-capture detection , J. Chromatogr. A , 1157 ( 1– 2 ), 23 – 29 .
  • Freundlich , H. M. F. ( 1906 ). Über die Adsorption in Lösungen , J. Phys. Chem. , 57 , 385 – 471 .
  • Gök , O. , Özcan , A. S. , and Özcan , A. ( 2008 ). Adsorption kinetics of naphthalene onto organo-sepiolite from aqueous solutions , Desalination , 220 , 96 – 107 .
  • Gulnaz , O. , Kaya , A. , and Dincer , S. ( 2006 ). The reuse of dried activated sludge for adsorption of reactive dye , J. Hazard Mater. , 134 ( 1–3 ), 190 – 196 .
  • Hall , K. R. , Eagleton , L. C. , Axerivos , A. , and Vermeuleu , T. ( 1966 ). Pore and solid diffusion kinetics in fixed bed adsorption under constant pattern conditions , Ind. Eng. Chem. Fundam. , 5 , 212 – 216 .
  • Hamad , B. K. , Ahmad , M. N. , and Afidah , A. R. ( 2010 ). High removal of 4-chloroguaiacol by high surface area of oil palm shell-activated carbon activated with NaOH from aqueous solution , Desalination , 257 , 1 – 7 .
  • Hamad , B. K. , Noor , A-Md. , and Rahim , A. A. ( 2011 ). Removal of 4-chloro-2-methoxyphenol from aqueous solution by adsorption to oil palm shell activated carbon activated with K2CO3 , J. Phys. Sci. , 22 ( 1 ), 39 – 55 .
  • Hameed , B. H. ( 2009 ). Spent tea leaves: A new non-conventional and low-cost adsorbent for removal of basic dye from aqueous solution , J. Hazard. Mater. , 161 , 253 – 259 .
  • Hameed , B. H. , Ahmad , A. A. , and Aziz , N. ( 2007 ). Isotherms, kinetics and thermodynamics of acid dye adsorption on activated palm ash , Chem. Eng. J. , 133 , 195 – 203 .
  • Hameed , B. H. , Mahmoud , D. K. , and Ahmad , A. L. ( 2008 ). Equilibrium modeling and kinetic studies on the adsorption of basic dye by a low-cost adsorbent: Coconut (Cocos nucifera) bunch waste , J. Hazard. Mater. , 158 , 65 – 72 .
  • Han , R. , Lu , Z. , Zou , W. , Daotong , W. , Shi , J. , and Jiujun , Y. ( 2006 ). Removal of copper(II) and lead(II) from aqueous solution by manganese oxide coated sand: II. Equilibrium study and competitive adsorption , J. Hazard. Mater. , 137 ( 1 ), 480 – 488 .
  • Hisarli , G. , Tezcan , C. , and Atun , G. ( 2012 ). Adsorption kinetics and equilibria of basic dyes onto zeolite in single and binary component systems , Chem. Eng. Commun. , 199 ( 11 ), 1412 – 1436 .
  • Ho , Y. S. , and McKay , G. (2000). The kinetics of sorption of divalent metal ions onto sphagnum moss peat, Water Res. , 34(3), 735–742.
  • Hu , Z.-J. , Wang , N. , Tan , J. , Chen , J.-Q. , and Zhong , W.-Y. ( 2011 ). Kinetic and equilibrium of cefradine adsorption onto peanut husk , Desalination Water Treat. , 37 , 160 – 168 .
  • Ifelebuegu , A. O. , Theophilus , S. C. , and Bateman , M. J. ( 2010 ). Mechanistic evaluation of the sorption properties of endocrine disrupting chemicals in sewage sludge biomass , Int. J. Environ. Sci. Technol. , 7 ( 4 ), 623 – 628 .
  • Itodo , A. U. , and Itodo , H. U. ( 2010 ). Sorption energies estimation using Dubinin-Radushkevich and Temkin adsorption isotherms , Life Sci. J. , 7 ( 4 ), 31 – 39 .
  • Kannan , N. , and Veemaraj , T. ( 2009 ). Removal of lead(II) ions by adsorption onto bamboo dust and commercial activated carbons—A comparative study , E-J. Chem. , 6 ( 2 ), 247 – 256 .
  • Kumar , M. , Kumar , D. , Pandey , L. K. , and Gaur , J. P. ( 2010 ). Methylene blue sorption capacity of some common waste plant materials , Chem. Eng. Commun. , 197 ( 11 ), 1435 – 1444 .
  • Kundu , S. , and Gupta , A. K. ( 2006 ). Arsenic adsorption onto iron oxide-coated cement (IOCC): Regression analysis of equilibrium data with several isotherm models and their optimization , Chem. Eng. J. , 122 ( 1–2 ), 93 – 106 .
  • Lagergren , S. ( 1898 ). Zur theorie der sogenannten adsorption gelöster stoffe, Bihang till Handlingar, vol. 24, part 4, no. 4, Kungliga Svenska Vetenskapsakademiens, Stockholm .
  • Lakshimi , Narayana Rao , K. C. , Krishbaiah , K. , and Ashutosh , A. ( 1994 ). Colour removal from a dye stuff industry effluent using activated carbon , Indian J. Chem. Technol. , 1 , 13 – 19 .
  • Langmuir , I. ( 1918 ). The adsorption of gases on plane surfaces of glass, mica and platinum , J. Am. Chem. Soc. , 40 , 361 – 368 .
  • Laoufiy , N. A. , Tassalit , D. , and Bentahar , F. ( 2008 ). The degradation of phenol in water solution by TiO2 photo catalysis in a helical reactor , Global NEST J. , 10 , 404 – 419 .
  • Li , Y. , Chen , B. , and Zhu , L. ( 2010 ). Enhanced sorption of polycyclic aromatic hydrocarbons from aqueous solution by modified pine bark , Bioresour. Technol. , 101 , 7307 – 7313 .
  • Liu , Y. , and Liu , Y. J. ( 2008 ). Biosorption isotherms, kinetics and thermodynamics , Sep. Purif. Technol. , 61 ( 3 ), 229 – 242 .
  • Low , M. J. O. ( 1960 ). Kinetics of chemisorptions of gases on solids , Chem. Rev. , 60 , 267 – 312 .
  • Ma , J.-W. , Wang , H. , Wang , F.-Y. , and Huang , Z.-H. ( 2010 ). Adsorption of 2,4-dichlorophenol from aqueous solution by a new low-cost adsorbent—Activated bamboo charcoal , Sep. Sci. Technol. , 45 , 2329 – 2336 .
  • Mackay , A. A. , and Gschwend , P. M. ( 2000 ). Sorption of monoaromatic hydrocarbons to wood , Environ. Sci. Technol. , 34 , 839 – 845 .
  • Marshall , W. E. , Wartelle , L. H. , Boler , D. M. , and Toles , C. A. ( 2000 ). Metal ion adsorption by soybean hulls modified with citric: A comparative study , Environ. Technol. , 21 ( 6 ), 601 – 607 .
  • McKay , G. , and Ho , Y. S. ( 1999 ). Sorption of lead(II) ions on peat , Water Res. , 33 , 578 – 584 .
  • Namasivayam , C. , and Kavitha , D. ( 2004 ). Removal of phenol and chlorophenols from water by coir pith carbon: Equilibrium and rate studies , J. Environ. Eng. Sci. , 46 ( 3 ), 217 – 232 .
  • Nasuha , N. , Hameed , B. H. , and Din , A. T. M. ( 2010 ). Rejected tea as a potential low cost adsorbent for the removal of methylene blue , J. Hazard. Mater. , 175 ( 1–3 ), 126 – 132 .
  • Okoye , I. P. , and Obi , C. ( 2012 ). Thermodynamic and kinetic evaluations of some heavy metal ions on aluminum-pillared and unpillared bentonite clays , Int. Arch. Appl. Sci. Technol. , 3 ( 2 ), 58 – 67 .
  • Onundi , Y. B. , Mamun , A. A. , Al Khatib , M. F. , AlSaadi , M. A. , and Suleyman , A. M. ( 2011 ). Heavy metals removal from synthetic wastewater by a novel nano-size composite adsorbent , Int. J. Environ. Sci. Technol. , 8 ( 4 ), 799 – 806 .
  • Owabor , C. N. , and Audu , J. E. ( 2010 ). Studies on the adsorption of naphthalene and pyrene from aqueous medium using ripe orange peels as adsorbent , Global J. Pure Appl. Sci. , 16 ( 1 ), 131 – 139 .
  • Popuri , S. R. , Jammala , A. , Reddy , K. V. N. , and Abburi , K. ( 2007 ). Biosorption of hexavalent chromium using tamarind (Tamarindus indica) fruit shell—A comparative study , Electron. J. Biotechnol. , 3 , 358 – 367 .
  • Poulopoulos , S. G. , Nikolaki , M. , Karampetsos , D. , and Philippopoulos , C. J. (2008). Photochemical treatment of 2-chlorophenol in aqueous solution using ultraviolet radiation, hydrogen peroxide and photo-Fenton reaction, J. Hazard. Mater. , 153, 582–587.
  • Radhika , M. , and Palanivelu , K. ( 2006 ). Adsorptive removal of chlorophenols from aqueous solution by low cost adsorbent—Kinetics and isotherm analysis , J. Hazard. Mater. , 138 ( 1 ), 116 – 124 .
  • Reddad , Z. , Gerente , C. , Andres , Y. , and Lecloirec , P. ( 2002 ). Adsorption of several metal ions onto a low cost biosorbent: Kinetic and equilibrium studies , Environ. Sci. Technol. , 36 , 2067 – 2073 .
  • Santhy , K. , and Selvapathy , P. ( 2006 ). Removal of reactive dyes from wastewater by adsorption on coir pith activated carbon , Bioresour. Technol. , 97 , 1329 – 1336 .
  • Sari , A. , Cıtak , D. , and Tuzen , M. ( 2010 ). Equilibrium, thermodynamic and kinetic studies on adsorption of Sb (III) from aqueous solution using low-cost natural diatomite , Chem. Eng. J. , 162 ( 2 ), 521 – 527 .
  • Sathishkumar , M. , Binupriya , A. R. , Kavitha , D. , Selvakumar , R. , Jayabalan , R. , Choi , J. G. , and Yun , S. E. ( 2009 ). Adsorption potential of maize cob carbons for 2, 4-dichlorophenol removal from aqueous solutions: Equilibrium, kinetics and thermodynamic modeling , Chem. Eng. J. , 147 ( 2–3 ), 265 – 271 .
  • Sharaani , F. W. , and Hameed , B. H. ( 2010 ). Batch adsorption of 2,4-dichlorophenol onto activated carbon derived from agricultural waste , Desalination , 255 ( 1–3 ), 159 – 164 .
  • Short , K. A. , Doyle , J. D. , King , R. J. , Seidler , R. J. , Stotzky , G. , and Olsen , R. H. ( 1991 ). Effects of 2,4-dichlorophenol, a metabolite of a genetically engineered bacterium, and 2,4-dichlorophenoxyacetate on some microorganisms-mediated ecological processes in soil , Appl. Environ. Microbiol. , 57 , 412 – 418 .
  • Sparks , D. L. ( 1999 ). Kinetics and mechanisms of chemical reactions at the soil mineral/water interface , in: Soil Physical Chemistry , ed. D. L. Sparks , 135 – 192 , CRC Press , Boca Raton, Fla .
  • Steinle , P. , Thalmann , P. , Höhener , P. , Hanselmann , K. W. , and Stucki , G. ( 2000 ). Effect of environmental factors on the degradation of 2,6-dichlorophenol in soil , Environ. Sci. Technol. , 34 ( 5 ), 771 – 775 .
  • Štrkalj , A. , and Malina , J. ( 2011 ). Thermodynamic and kinetic study of adsorption of Ni (ii) ions on carbon anode dust , Chem. Eng. Commun. , 198 ( 12 ), 1497 – 1504 .
  • Tan , I. A. W. , Ahmad , A. L. , and Hameed , B. H. ( 2009 ). Adsorption isotherm, kinetics, thermodynamics and desorption studies of 2,4,6–trichlorophenol on oil palm empty fruit bunch-based activated carbon , J. Hazar. Mater. , 164 , 473 – 482 .
  • Tsai , W. T. , and Chen , H. R. ( 2010 ). Removal of Malachite Green from aqueous solution using low-cost chlorella-based biomass . J. Hazard. Mater. , 175 , 844 – 849 .
  • Unnithan , M. R. , Vinod , V. P. , and Anirudhan , T. S. ( 2002 ). Ability of iron (III) loaded carboxylated polysacrylamide-grafted sawdust to remove phosphate ions from aqueous solution and fertilizer industry wastewater: Adsorption kinetics and isotherm studies , J. Appl. Polym. Sci. , 84 , 2541 – 2553 .
  • Wang , X. , Pan , J. , Guan , W. , Zou , X. , Hu , W. , Yan , Y. , and Li , C. ( 2011 ). Adsorptive removal of 2,6-dichlorophenol from aqueous solution by surfactant-modified palygorskite sorbents , Adsorp. Sci. Technol. , 29 ( 2 ), 185 – 196 .
  • Weber , W. J. , and Morris , J. C. ( 1963 ). Kinetics of adsorption on carbon from solution , J. Sanit. Eng. Div. , 89 , 31 – 60 .
  • Yee , D. C. , and Wood , T. K. ( 1997 ). 2,4-dichlorophenol degradation using Streptomyces viridosporus T7A lignin peroxidase , Biotechnol. Prog. , 13 , 53 – 59 .
  • Yu , Y. , Zhuang , Y. Y. , Wang , Z. H. , and Qiu , M. Q. ( 2004 ). Adsorption of water-soluble dyes modified resin , Chemosphere , 54 , 425 – 430 .
  • Yuan , X. , Zhuo , S.-P. , Zing , W. , Cui , H.-Y. , Dai , X.-D. , Liu , X.-M. , and Yan , Z.-F. (2007). Aqueous dye adsorption on ordered mesoporous carbons, J. Colloid Interface Sci. , 310, 83–89.
  • Zeinali , F. , Ghoreyshi , A. A. , and Najafpour , G. ( 2012 ). Removal of toluene and dichloromethane from aqueous phase by granular activated carbon (GAC) , Chem. Eng. Commun. , 199 ( 2 ), 203 – 220 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.