279
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Standard Enthalpy of Formation of CuAl2O4 Revisited

, , &

References

  • Adanez, J., Abad, A., Garcia-Labiano, F., Gayan, P., and de Diego, L. F. (2012). Progress in chemical-looping combustion and reforming technologies, Progr. Energy Combust. Sci., 38, 215–282.
  • Arjmand, M., Azad, A.-M., Leion, H., Lyngfelt, A., and Mattisson, T. (2011). Prospects of Al2O3 and MgAl2O4-Supported CuO oxygen carriers in Chemical-Looping Combustion (CLC) and Chemical-Looping with Oxygen Uncoupling (CLOU), Energy Fuels, 25, 5493–5502.
  • Arjmand, M., Azad, A.-M., Leion, H., Mattisson, T., and Lyngfelt, A. (2012a). Evaluation of CuAl2O4 as an oxygen carrier in chemical-looping combustion, Ind. Eng. Chem. Res., 51, 13924–13934.
  • Arjmand, M., Keller, M., Leion, H., Mattisson, T., and Lyngfelt, A. (2012b). Oxygen release and oxidation rates of MgAl2O4-supported CuO oxygen carrier for Chemical-Looping Combustion with Oxygen Uncoupling (CLOU), Energy Fuels, 26, 6528–6539.
  • Barin, I. (1995). Thermochemical Data of Pure Substances, in Colaboration with Gregor Platzki, 3rd ed., eds. S. Karin and G. James VCH Verlagsgesellschaft mbH, Weinheim.
  • Bolt, P. H., Habraken, F. H. P. M., and Geus, J. W. (1998). Formation of nickel, cobalt, copper, and iron aluminates from α- and γ-alumina-supported oxides: a comparative study, J. Solid State Chem., 135, 59–69.
  • Ertl, G., Hierl, R., Knözinger, H., Thiele, N., and Urbach, H. P. (1980). XPS study of copper aluminate catalysts, Appl. Surf. Sci., 5, 49–64.
  • Friedman, R. M., Freeman, J. J., and Lytle, F. W. (1978). Characterization of Cu/Al2O3 catalysts, J. Catal., 55, 10–28.
  • Gadalla, A. M. M., and White, J. (1964). Equilibrium relationships in the system CuO-Cu2O-Al2O3, Trans. Br. Ceram. Soc., 63, 39–62.
  • Gayán, P., Adánez-Rubio, I., Abad, A., de Diego, L. F., García-Labiano, F., and Adánez, J. (2012). Development of Cu-based oxygen carriers for Chemical-Looping with Oxygen Uncoupling (CLOU) process, Fuel, 96, 226–238.
  • Hu, C.-Y., Shih, K., and Leckie, J. O. (2010). Formation of copper aluminate spinel and cuprous aluminate delafossite to thermally stabilize simulated copper-laden sludge, J. Hazard. Mater., 181, 399–404.
  • Ilinich, O., Ruettinger, W., Liu, X., and Farrauto, R. (2007). Cu–Al2O3–CuAl2O4 water–gas shift catalyst for hydrogen production in fuel cell applications: mechanism of deactivation under start–stop operating conditions, J. Catal., 247, 112–118.
  • Jacob, K. T., and Alcock, C. B. (1975). Thermodynamics of CuAlO2 and CuAl2O4 and phase equilibria in the system Cu2O-CuO-Al2O3, J. Am. Ceram. Soc., 58, 192–195.
  • Karagiannakis, G., Agrafiotis, C. C., Zygogianni, A., Pagkoura, C., and Konstandopoulos, A. G. (2011). Hydrogen production via sulfur-based thermochemical cycles: Part 1: synthesis and evaluation of metal oxide-based candidate catalyst powders for the sulfuric acid decomposition step, Int. J. Hydrogen Energy, 36, 2831–2844.
  • Knacke, O., Kubaschewski, O., and Hesselmann, K. (1991). Thermochemical Properties of Inorganic Substances, 2nd ed., Volume I, Springer-Verlag, Berlin, 627.
  • Kwak, B. K., Park, D. S., Yun, Y. S., and Yi, J. (2012). Preparation and characterization of nanocrystalline CuAl2O4 spinel catalysts by sol–gel method for the hydrogenolysis of glycerol, Catal. Commun., 24, 90–95.
  • Luo, M.-F., Fang, P., He, M., and Xie, Y.-L. (2005). In situ XRD, Raman, and TPR studies of CuO/Al2O3 catalysts for CO oxidation, J. Mol. Catal. A Chem., 239, 243–248.
  • Misra, S. K., and Chaklader, A. C. D. (1963). The system copper oxide—alumina, J. Am. Ceram. Soc., 46, 509–509.
  • Scientific Group Thermodata Europe (SGTE). (1999). Thermodynamic properties of inorganic material complied by SGTE, pure substances elements and compounds from AgBr to Ba3N2, in: Group IV: Physical Chemistry, eds. I. Hurtado and D. Neuschütz Volume 19, Subvolume A, Part 1, SpringerMaterials – The Landolt-Börnstein Database (http://www.springermaterials.com), 208.
  • Susnitzky, D. W., and Carter, C. B. (1991). The formation of copper aluminate by solid-state reaction, J. Mater. Res., 6, 1958–1963.
  • Tang, Y., Chui, S. S.-Y., Shih, K., and Zhang, L. (2011). Copper stabilization via spinel formation during the sintering of simulated copper-laden sludge with aluminum-rich ceramic precursors, Environ. Sci. Technol., 45, 3598–3604.
  • Tang, Y., Liu, Y., Zhu, P., Xue, Q., Chen, L., and Lu, Y. (2009). High-performance HTLcs-derived CuZnAl catalysts for hydrogen production via methanol steam reforming, AIChE J., 55, 1217–1228.
  • Zalazinskii, A. G., Balakirev, V. F., Chebotaev, N. M., and Chufarov, G. I. (1969). Thermodynamic analysis of the reduction, dissociation, and formation of copper (I) aluminate (CuAlO2), chromate(III) (CuCrO2), and ferrate(II) (CuFeO2) from the free elements and oxides, Russ. J. Inorg. Chem., 14, 326–328.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.