389
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Optimal Temperature and pH Control for a Batch Simultaneous Saccharification and Co-Fermentation Process

, &

References

  • Abashar, M. E. E. (2011). Some complex dynamic features of a bioethanol fermentor excited by sinusoidal perturbations, Chem. Eng. J., 172, 386–398.
  • Cantarella, M., Cantarella, L., Gallifuoco, A., Spera, A., and Alfani, F. (2004). Comparison of different detoxification methods for steam-exploded poplar wood as a substrate for the bioproduction of ethanol in SHF and SSF, Process Biochem., 39, 1533–1542.
  • Cardona, C. A., and Sanchez, O. J. (2007). Fuel ethanol production: Process design trends and integration opportunities, Bioresour. Technol., 98, 2415–2457.
  • Chen, M. L., and Wang, F. S. (2010a). Optimization of a fed-batch simultaneous saccharification and co-fermentation process from lignocellulose to ethanol, Ind. Eng. Chem. Res., 49, 5775–5785.
  • Chen, M. L., and Wang, F. S. (2010b). Optimal trade-off design of integrated fermentation processes for ethanol production using genetically engineered yeast, Chem. Eng. J., 158, 271–280.
  • Chiou, J. P., and Wang, F. S. (1999). Hybrid method of evolutionary algorithms for static and dynamic optimization problems with application to a fed-batch fermentation process, Comput. Chem. Eng., 23, 1277–1291.
  • Dai, W, Word, D. P., and Hahn, J. (2013). Modeling and dynamic optimization of fuel-grade ethanol fermentation using fed-batch process. Control Engineering Practice, http://dx.doi.org/10.1016/j.conengprac.2013.01.005
  • Den Haan, R., McBride, J. E., La Grange, D. C., Lynd, L. R., and Van Zyl, W. H. (2007). Functional expression of cellobiohydrolases in Saccharomyces cerevisiae towards one-step conversion of cellulose to ethanol, Enzyme Microb. Technol., 40, 1291–1299.
  • Eslamloueyan, R., and Setoodeh, P. (2011). Optimization of fed-batch recombinant yeast fermentation for ethanol production using a reduced dynamic flux balance model based on artificial neural networks, Chem. Eng. Commun., 198, 1309–1338.
  • Fan, Z., South, C., Lyford, K., Munsie, J., van Walsum, P., and Lynd, L. (2003). Conversion of paper sludge to ethanol in a semicontinuous solids-fed reactor, Bioproc. Biosyst. Eng., 26, 93–101.
  • Ferreiraa, S., Duartea, A. P., Ribeirob, M. H. L., Queiroza, J. A., and Dominguesa, F. C. (2009). Response surface optimization of enzymatic hydrolysis of Cistus ladanifer and Cytisus striatus for bioethanol production, Biochem. Eng. J., 45, 192–200.
  • Haruna, R., and Danquah, M. K. (2011). Enzymatic hydrolysis of microalgal biomass for bioethanol production, Chem. Eng. J., 168, 1079–1084.
  • Hodge, D. B., and Karim, M. N. (2002). Modeling and advanced control of recombinant Zymomonas mobilis fed-batch fermentation, Biotechnol. Progr., 18, 572–579.
  • Jeffries, T. W., and Schartman, R. (1999). Bioconversion of secondary fiber fines to ethanol using counter-current enzymatic saccharification and co-fermentation, Appl. Biochem. Biotechnol., 78, 435–444.
  • Jeffries, T. W., and Jin, Y. S. (2000). Ethanol and thermotolerance in the bioconversion of xylose by yeasts, Adv. Appl. Microbiol., 47, 221–268.
  • Kadam, K. L., Rydholm, E. C., and McMillan, J. D. (2004). Development and validation of a kinetic model for enzymatic saccharification of lignocellulose biomass, Biotechnol. Progr., 20, 698–705.
  • Krishnan, M. S., Xia, Y., Ho, N. W. Y., and Tsao, G. T. (1999). Fermentation kinetics of ethanol production from glucose and xylose by recombinant Saccharomyces 1400 (pLNH33), Appl. Biochem. Biotechnol., 78, 373–388.
  • Leksawasdi, N., Joachimsthal, E. L., and Rogers, P. L. (2001). Mathematical modelling of ethanol production from glucose/xylose mixtures by recombinant Zymomonas mobilis, Biotechnol. Lett., 23, 1087–1093.
  • Lin, Y. C., Hwang, K. S., and Wang, F. S. (2003). Evolution Lagrange method for mixed-integer constrained optimization problem, Eng. Opt., 35, 267–284.
  • Lin, Y. S., Lee, W. C., Duan, K. J., and Lin, Y. H. (2013). Ethanol production by simultaneous saccharification and fermentation in rotary drum reactor using thermotolerant Kluveromyces marxianus, Appl. Energy, 105, 389–394.
  • Liu, C. G., Lin, Y. H., and Bai, F. W. (2013). Global gene expression analysis of Saccharomyces cerevisiae grown under redox potential-controlled very-high-gravity conditions, Biotechnology J. Early online version, doi:10.1002/biot.201300127
  • Liu, P. K., and Wang, F. S. (2010). Hybrid differential evolution including geometric mean mutation for optimization of biochemical systems, J. Taiwan Inst. Chem. Eng., 41, 65–72.
  • Lynd, L. R., van Zyl, W. H., McBride, J. E., and Laser, M. (2005). Consolidated bioprocessing of cellulosic biomass: an update, Curr. Opin. Biotechnol., 16, 577–583.
  • Margeot, A., Hahn-Hagerdal, B., Edlund, M., Slade, R., and Monot, F. (2009). New improvements for lignocellulosic ethanol, Curr. Opin. Biotechnol., 20, 372–380.
  • Marais, S. (2008). Enzymatic hydrolysis with commercial enzymes of a xylan extracted from hardwood pulp, MS Dissertation, University of Pretoria.
  • Martín, C., Galbe, M., Wahlbom, C. F., Hahn-Hägerdal, B., and Jönsson, L. J. (2002). Ethanol production from enzymatic hydrolysates of sugarcane bagasse using recombinant xylose-utilising Saccharomyces cerevisiae, Enzyme Microb. Technol., 31, 274–282.
  • Martín, C., González, Y., Fernández, T., and Thomsen, A. B. (2006). Investigation of cellulose convertibility and ethanolic fermentation of sugarcane bagasse pretreated by wet oxidation and steam explosion, J. Chem. Technol. Biot., 81, 1669–1677.
  • Matsushika, A., Inoue, H., Kodaki, T., and Sawayama, S. (2009). Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives, Appl. Microbiol. Biot., 84, 37–53.
  • Mesa, L., González, E., Romerob, I., Ruiz, E., Cara, C., and Castro, E. (2011). Comparison of process configurations for ethanol production from two-step pretreated sugarcane bagasse, Chem. Eng. J., 175, 185–191.
  • Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., and Ladisch, M. (2005). Features of promising technologies for pretreatment of lignocellelosic biomass, Bioresour. Technol., 96, 673–686.
  • Öhgren, K., Bura, R., Lesnicki, G., Saddler, J., and Zacchi, G. (2007). A comparison between simultaneous saccharification and fermentation and separate hydrolysis and fermentation using steam-pretreated corn stover, Process Biochem., 42, 834–839.
  • Olofsson, K., Bertilsson, M., and Lidén, G. (2008). A short review on SSF–an interesting process option for ethanol production from lignocellulosic feedstocks, Biotechnol. Biofuels, 1, 7–20.
  • Phisalaphong, M., Srirattana, N., and Tanthapanichakoon, W. (2006). Mathematical modeling to investigate temperature effect on kinetic parameters of ethanol fermentation, Biochem. Eng. J., 28, 36–43.
  • Saha, B. C., Iten, L. B., Cotta, M. A., Wu, Y. V. (2005). Dilute acid pretreatment, enzymatic saccharification, and fermentation of rice hulls to ethanol, Biotechnol. Progr., 21, 816–822.
  • Sakawa, M. (1993). Fuzzy Sets and Interactive Multiobjective Optimization, Plenum Press, New York, N.Y.
  • Sendich, E. N., Laser, M., Kim, S., Alizadeh, H., Laureano-Perez, L., Dale, B., and Lynd, L. (2008). Recent process improvements for the ammonia fiber expansion (AFEX) process and resulting reductions in minimum ethanol selling price, Bioresour. Technol., 99, 8429–8435.
  • Sridhar, L. N. (2013). Global optimization of continuous fermentation involing Zymomonas mobilis, J. Sustainable Bioenergy Sys., 3, 64–67.
  • Sun, Y., and Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: a review, Bioresour. Technol., 83 (2002) 1–11.
  • Tabandeh, F., Hosseinian Moghaddan, H. R., Yakhchali, B., Shariati, P., Mousavian, M. T. H., and Ghasemi, F. (2011). Fed-batch fermentation of bacillus clausii for efficient production of alkaline protease using different feeding strategies, Chem. Eng. Commun., 198, 1063–1074.
  • Tomás-Pejó, E., Oliva, J. M., Ballesteros, M., and Olsson, L. (2009). Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains, Biotechnol. Bioeng., 100(6), 1122–1131.
  • Victorino, I. R. S., Maia, J. P., Morais, E. R., Wolf Maciel, M. R., and Maciel Filho, R. (2007). Optimization for large scale process based on evolutionary algorithms: Genetic algorithms, Chem. Eng. J., 132, 1–8.
  • Wingren, A., Galbe, M., and Zacchi, G. (2003). Techno-economic evaluation of producing ethanol from softwood: comparison of SSF and SHF and identification of bottlenecks, Biotechnol. Prog., 19, 1109–1117.
  • Zaldivar, J., Nielsen, J., and Olsson, L. (2001). Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration, Appl. Microbiol. Biot., 56 (2001): 17–34.
  • Zhang, M., Eddy, C., Deanda, K., Finkelstein, M., Picataggio, S. (1995). Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science, 267, 240–243.
  • Zhu, S., Wu, Y., Zhao, Y., Tu, S., Xue, Y. Yu, Z., and Zhang, X. (2006). Fed-batch simultaneous saccharification and fermentation of microwave/ acid/alkali/H2O2 pretreated rice straw for production of ethanol, Chem. Eng. Commun., 193, 639–648.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.