220
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

Efficient Degradation of a Biorecalcitrant Pollutant from Wastewater Using a Fluidized Catalyst-Bed Reactor

, &

References

  • Aghapour, A., Moussavi, G., and Yaghmaei, K. (2013). Investigating the performance of a novel cyclic rotating-bed biological reactor compared with a sequencing continuous-inflow reactor for biodegradation of catechol in wastewater, Biores. Technol., 138, 369–372.
  • Asgari, G., Ramavandi, B., and Farjadfard, S. (2013a). Abatement of azo dye from wastewater using bimetal-chitosan, Sci. World J., 2013, 1–10.
  • Asgari, G., Seid Mohammadi, A., Mortazavi, S. B., and Ramavandi, B. (2013b). Investigation on the pyrolysis of cow bone as a catalyst for ozone aqueous decomposition: kinetic approach, J. Anal. Appl. Pyrol., 99, 149–154.
  • Bajaj, M., Winter, J., and Gallert, C. (2011). Effect of deproteination and deacetylation conditions on viscosity of chitin and chitosan extracted from Crangon crangon shrimp waste. Biochem. Eng. J., 56, 51–62.
  • Beltran, F. J., Pocostales, P., Álvarez, P. M., and Lopez-Pio neiro, F. (2009). Catalysts to improve the abatement of sulfamethoxazole and the resulting organic carbon in water during ozonation, Appl. Catal. B Environ., 92, 262–270.
  • Beltran, F. J., Rivas, F. J., and Montero-De-Espinosa, R. (2003). Mineralization improvement of phenol aqueous solutions through heterogeneous catalytic ozonation, J. Chem. Technol. Biotechnol., 78, 1225–1233.
  • Crini, G. (2006). Non-conventional low-cost adsorbents for dye removal: a review, Biores. Technol., 97, 1061–1085.
  • Crittenden, C., Trussell, R. R., Hand, D. W., Howe, K. J., and Tchobanoglous, G. (2005). Water Treatment: Principals and Design, John Wiley and Sons Inc., New York, NY.
  • De Laat, J., Le, G. T., and Legube, B. (2004). A comparative study of the effects of chloride, sulfate and nitrate ions on the rates of decomposition of H2O2 and organic compounds by Fe(II)/H2O2 and Fe(III)/H2O2, Chemosphere, 55, 715–723.
  • Dong, Y., He, K., Zhao, B., Yin, Y., Yin, L., and Zhang, A. (2007). Catalytic ozonation of azo dye active brilliant red X-3B in water with natural mineral brucite, Catal. Comm., 8, 1599–1603.
  • Dulman, V., Maria Cucu-Man, S., Iulian Olariu, R., Buhaceanu, R., Dumitras, M., and Bunia, I. (2012). A new heterogeneous catalytic system for decolorization and mineralization of Orange G acid dye based on hydrogen peroxide and a macroporous chelating polymer, Dyes Pigm., 95, 79–88.
  • Erol, F., and Ozbelge, T. A. (2008). Catalytic ozonation with non-polar bonded alumina phases for treatment of aqueous dye solutions in a semi-batch reactor, Chem. Eng. J., 139, 272–283.
  • Extremera, R., Pavlovic, I., and Pto, M. R. (2012). Removal of acid orange 10 by calcined Mg/Al layered double hydroxides from water and recovery of the adsorbed dye, Chem. Eng. J., 213, 392–400.
  • Faria, P. C. C., Orfao, J. J. M., and Pereira, M. F. R. (2009). Activated carbon and ceria catalysts applied to the catalytic ozonation of dyes and textile effluents, Appl. Catal., B, 88, 341–350.
  • Garrido-Ramírez, E. G., Theng, B. K. G., and Mora, M. L. (2010). Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions — a review, Appl. Clay Sci., 47, 182–192.
  • Guedes, A. M. F. M., Madeira, L. M. P., Boaventura, R. A. R., and Costa, C. A. V. (2003). Fenton oxidation of cork cooking wastewater—overall kinetic analysis, Water Res., 37, 3061–3069.
  • Idel-aouad, R., Valiente, M., Yaacoubi, A., Tanouti, B., and Lopez-Mesas, M. (2011). Rapid decolourization and mineralization of the azo dye C.I. Acid Red 14 by heterogeneous Fenton reaction, J. Hazard. Mater., 188, 745–750.
  • Khieu, D. Q., Quang, D. T., Lam, T. D., Phu, N. H., Lee, J. H., and Kim, J. S. (2009). Fe-MCM-41 with highly ordered mesoporous structure and high Fe content: synthesis and application in heterogeneous catalytic wet oxidation of phenol, J. Inclusion Phenom. Macrocyclic Chem., 65, 73–81.
  • Lin, S. H., and Wang, C. H. (2003a). Adsorption and catalytic oxidation of phenol in a new ozone reactor, Environ. Technol., 24, 1031–1039.
  • Lin, S. H., and Wang, C. H. (2003b). Ozonation of phenolic wastewater in a gas-induced reactor with a fixed granular activated carbon bed, Ind. Eng. Chem. Res., 42, 1648–1653.
  • Lucas, M. S., Dias, A. A., Sampaio, A., Amaral, C., and Peres, J. A. (2007). Degradation of a textile reactive Azo dye by a combined chemical–biological process: Fenton's reagent-yeast, Water Res., 41, 1103–1109.
  • Mortazavi, S. B., Ramavandi, B., and Moussavi, G. (2011). Chemical reduction kinetics of nitrate in aqueous solution by Mg/Cu bimetallic particles, Environ. Technol. J., 32, 251–260.
  • Moussavi, G., Khavanin, A., and Alizadeh, R. (2009). The investigation of catalytic ozonation and integrated catalytic ozonation/biological processes for the removal of phenol from saline wastewaters, J. Hazard. Mater., 171, 175–181.
  • Mungmart, M., Kijsirichareonchai, U., Tonanon, N., Prechanont, S., Panpranot, J., Yamamoto, T., Eiadua, A., Sano, N., Tanthapanichakoon, W., and Charinpanitkul, T. (2011). Metal catalysts impregnated on porous media for aqueous phenol decomposition within three-phase fluidized-bed reactor, J. Hazard. Mater., 185, 606–612.
  • Nawrocki, J., and Kasprzyk-Hordern, B. (2010). The efficiency and mechanisms of catalytic ozonation, Appl. Catal. B, 99, 27–42.
  • No, H. K., and Meyers, S. P. (1995). Preparation and characterization of chitin and chitosan—A Review, J. Aquat. Food Prod. Technol., 4, 27–52.
  • Pirgalıoğlu, S., and Ozbelge, T. A. (2009). Comparison of non-catalytic and catalytic ozonation processes of three different aqueous single dye solutions with respect to powder copper sulfide catalyst, Appl. Catal. A., 363, 157–163.
  • Qu, X., Zheng, J., and Zhang, Y. (2007). Catalytic ozonation of phenolic wastewater with activated carbon fiber in a fluid bed reactor, J. Colloid Interface Sci., 309, 429–434.
  • Ramavandi, B., and Farjadfard, S. (2014). Removal of chemical oxygen demand from textile wastewater using a natural coagulant, Korean J. Chem. Eng., 31, 81–87.
  • Ramavandi, B., Jafarzadeh, M., and Sahebi, S. (2014). Removal of phenol from hyper-saline wastewater using Cu/Mg/Al-chitosan-H2O2 in a fluidized catalytic bed reactor, React. Kinet. Mech. Catal., 111, 605–620.
  • Ramavandi, B., Mortazavi, S. B., Moussavi, G., Ranjbar Vakilabady, D., and Mamisaheby, S. (2011). Experimental investigation of the chemical reduction of nitrate in water by MgO and Cu/Mg bimetallic particles in the absence of any pH-control mechanism, Fresenius Environ. Bull. 20 – No 9a.
  • Ramirez, J. H., Costa, C. A., and Madeira, L. M. (2005). Experimental design to optimize the degradation of the synthetic dye Orange II using Fenton's reagent, Catal. Today, 107–108, 68–76.
  • Santos, A., Yustos, P., Cordero, T., Gomis, S., Rodruguez, S., and Garcsa-Ochoa, F. (2005). Catalytic wet oxidation of phenol on active carbon: stability, phenol conversion and mineralization, Catal. Today, 102, 213–218.
  • Tabrizi, G. B., and Mehrvar, M. (2004). Integration of advanced oxidation technologies and biological processes: recent developments, trends, and advances, J. Environ. Sci. Health, Part A: Toxic/Hazard. Subst., 39, 3029–3081.
  • Tripathi, S., Mehrotra, G. K., and Dutta, P. K. (2010). Preparation and physicochemical evaluation of chitosan/poly(vinyl alcohol)/pectin ternary film for food-packaging applications, Carbohydr. Polym., 79, 711–716.
  • Valdés, H., and Zaror, C. A. (2006). Heterogeneous and homogeneous catalytic ozonation of benzothiazole promoted by activated carbon: kinetic approach, Chemosphere, 65, 1131–1136.
  • Vallet, A., Ovejero, G., Rodriguez, A., Peres, J. A., and Garcia, J. (2013). Ni/MgAlO regeneration for catalytic wet air oxidation of an azo-dye in trickle-bed reaction, J. Hazard. Mater., 244–245, 46–53.
  • Vieira, R. A. M., Suñé, L. S. V. S., Pires, C. A. M., Silva, A. O. S., Souza, M. J. B., and Araujo, A. S. (2006). Catalytic oxidation of phenol in aqueous media over CuZSM-12 zeolite, React. Kinet. Mech. Catal., 88, 119–126.
  • Vione, D., Maurino, V., Minero, C., Calza, P., and Pelizzetti, E. (2005). Nitration and photonitration of naphthalene in aqueous systems, Environ. Sci. Technol., 39, 5066–5075.
  • Wang, H., Xiang, X., Li, F., Evans, D. G., and Duan, X. (2009). Investigation of the structure and surface characteristics of Cu-Ni-M(III) mixed oxides (M˭Al, Cr and In) prepared from layered double hydroxide precursors, Appl. Surf. Sci., 255, 6945–6952.
  • Xia, M., Long, M., Yang, Y., Chen, C., Cai, W., and Zhou, B. (2011). Detection of point mutation in the p53 gene using a peptide nucleic acid biosensor, Appl. Catal., B, 110, 118–125.
  • Yang, J. M., Su, W. Y., Leu, T. L., and Yang, M. C. (2004). Evaluation of chitosan/PVA blended hydrogel membranes, J. Membr. Sci., 236, 39–51.
  • Zhang, S., Zhao, X., Niu, H., Shi, Y., Cai, Y., and Jiang, G. (2009). Superparamagnetic Fe3O4 nanoparticles as catalysts for the catalytic oxidation of phenolic and aniline compounds, J. Hazard. Mater., 167, 560–566.
  • Zhou, S., Gu, C. T., Qian, Z. Y., Xu, J. G., and Xia, C. H. (2011b). The activity and selectivity of catalytic peroxide oxidation of chlorophenols over Cu–Al hydrotalcite/clay composite, J. Colloid Interface Sci., 357, 447–452.
  • Zhou, S., Qian, Z., Sun, T., Xu, J., and Xia, C. (2011a). Catalytic wet peroxide oxidation of phenol over Cu-Ni-Al hydrotalcite, Appl. Clay Sci., 53, 627–633.
  • Zhu, B. Z., Kalyanaraman, B., and Jiang, G. B. (2007). Molecular mechanism for metal-independent production of hydroxyl radicals by hydrogen peroxide and halogenated quinines, Proc. Natl. Acad. Sci. U.S.A., 104, 17575–17578.
  • Zhu, B. Z., Shan, G. Q., Huang, C. H., Kalyanaraman, B., Mao, L., and Du, Y. G. (2009). Metal-independent decomposition of hydroperoxides by halogenated quinones: Detection and identification of a quinone ketoxy radical, Proc. Natl. Acad. Sci. U.S.A., 106, 11466–11471.
  • Zhu, H. Y., Fu, Y. Q., Jiang, R., Yao, J., Xiao, L., and Zeng, G. M. (2012). Novel magnetic chitosan/poly(vinyl alcohol) hydrogel beads: Preparation, characterization and application for adsorption of dye from aqueous solution, Biores. Technol., 105, 24–30.
  • Zhu, K., Liu, C., Ye, X., and Wu, Y. (1998). Catalysis of hydrotalcite-like compounds in liquid phase oxidation: (I) phenol hydroxylation, Appl. Catal., A, 168, 365–372.
  • Zrnčević, S., and Gomzi, Z. (2005). CWPO: an environmental solution for pollutant removal from wastewater, Ind. Eng. Chem. Res., 44, 6110–6114.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.