281
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Dry Reforming of Methane over Mg-Co-Al Mixed-Oxides Catalysts: Effect of Mg Content and Reduction Conditions

, , &

References

  • Aasberg-Petersen, K., Dybkjær, I., Ovesen, C. V., Schjødt, N. C., Sehested, J., and Thomsen, S. G. (2011). Natural gas to synthesis gas – Catalysts and catalytic processes, J. Nat. Gas Sci. Engin., 3, 423–459.
  • Benito, R., Herrero, M., Labajos, F. M., Rives, V., Royo, C., Latorre, N., and Monzon, A. (2009). Production of carbon nanotubes from methane: Use of Co-Zn-Al catalysts prepared by microwave-assisted synthesis, Chem. Eng. J. (Amsterdam, Neth.), 149, 455–462.
  • Bialas, A., Niebrzydowska, P., Dudek, B., Piwowarska, Z., Chmielarz, L., Michalik, M., Kozak, M., and Kuśtrowski, P. (2011). Coprecipitated Co–Al and Cu–Al oxide catalysts for toluene total oxidation, Catal. Today, 176, 413–416.
  • Bouarab, R., Akdim, O., Auroux, A., Cherifi, O., and Mirodatos, C. (2004). Effect of MgO additive on catalytic properties of Co/SiO2 in the dry reforming of methane, Appl. Catal., A Gen., 264, 161–168.
  • Budiman, A., Song, S.-H., Chang, T.-S., Shin, C.-H., and Choi, M.-J. (2012). Dry reforming of methane over cobalt catalysts: A literature review of catalyst development, Catal. Surv. Asia, 16, 183–197.
  • Chattanathan, S. A., Adhikari, S., and Taylor, S. (2012). Conversion of carbon dioxide and methane in biomass synthesis gas for liquid fuels production, Int. J. Hydrog. Energy, 37, 18031–18039.
  • Chen, D., Lødeng, R., Anundskås, A., Olsvik, O., and Holmen, A. (2001). Deactivation during carbon dioxide reforming of methane over Ni catalyst: Microkinetic analysis, Chem. Eng. Sci., 56, 1371–1379.
  • Daza, C. E., Gallego, J., Moreno, J. A., Mondragon, F., Moreno, S., and Molina, R. (2008). CO2 reforming of methane over Ni/Mg/Al/Ce mixed oxides, Catal. Today, 133, 357–366.
  • de Sousa, F. F., de Sousa, H. S. A., Oliveira, A. C., Junior, M. C. C., Ayala, A. P., Barros, E. B., Viana, B. C., Filho, J. M., and Oliveira, A. C. (2012). Nanostructured Ni-containing spinel oxides for the dry reforming of methane: Effect of the presence of cobalt and nickel on the deactivation behaviour of catalysts, Int. J. Hydrog. Energy, 37, 3201–3212.
  • de Souza, G., Ávila, V. C., Marcílio, N. R., and Perez-Lopez, O. W. (2012). Synthesis gas production by steam reforming of ethanol over M-Ni-Al hydrotalcite-type catalysts; M˭Mg, Zn, Mo, Co, Proc. Engin., 42, 1805–1815.
  • Escobar, C., and Perez-Lopez, O. W. (2014). Hydrogen production by methane decomposition over Cu–Co–Al mixed oxides activated under reaction conditions, Catal. Lett., 144, 796–804.
  • Gabrovska, M., Edreva-Kardjieva, R., Tenchev, K., Tzvetkov, P., Spojakina, A., and Petrov, L. (2011). Effect of Co-content on the structure and activity of Co–Al hydrotalcite-like materials as catalyst precursors for CO oxidation, Appl. Catal., A Gen., 399, 242–251.
  • Gadalla, A. M., and Bower, B. (1988). The role of catalyst support on the activity of nickel for reforming methane with CO2, Chem. Eng. Sci., 43, 3049–3062.
  • Gennequin, C., Kouassi, S., Tidahy, L., Cousin, R., Lamonier, J.-F., Garcon, G., Shirali, P., Cazier, F., Aboukaïs, A., and Siffert, S. (2010). Co–Mg–Al oxides issued of hydrotalcite precursors for total oxidation of volatile organic compounds. Identification and toxicological impact of the by-products, C. R. Chim., 13, 494–501.
  • Hermes, N. A., Lansarin, M. A., and Perez-Lopez, O. W. (2011). Catalytic decomposition of methane over M-Co-Al catalysts (M˭Mg, Ni, Zn, Cu), Catal. Lett., 141, 1018–1025.
  • Holgado, M. J., Rives, V., and San Roman, M. S. (2001). Characterization of Ni-Mg-Al mixed oxides and their catalytic activity in oxidative dehydrogenation of n-butane and propene, Appl. Catal., A Gen., 214, 219–228.
  • Hong, J., Chu, W., Chernavskii, P. A., and Khodakov, A. Y. (2010). Effects of zirconia promotion on the structure and performance of smaller and larger pore silica-supported cobalt catalysts for Fischer–Tropsch synthesis, Appl. Catal., A Gen., 382, 28–35.
  • Jones, G., Jakobsen, J. G., Shim, S. S., Kleis, J., Andersson, M. P., Rossmeisl, J., Abild-Pedersen, F., Bligaard, T., Helveg, S., Hinnemann, B., Rostrup-Nielsen, J. R., Chorkendorff, I., Sehested, J., and Nørskov, J. K. (2008). First principles calculations and experimental insight into methane steam reforming over transition metal catalysts, J. Catal., 259, 147–160.
  • Khassin, A. A., Yurieva, T. M., Kustova, G. N., Itenberg, I. S., Demeshkina, M. P., Krieger, T. A., Plyasova, L. M., Chermashentseva, G. K., and Parmon, V. N. (2001). Cobalt-aluminum co-precipitated catalysts and their performance in the Fischer-Tropsch synthesis, J. Mol. Catal. A: Chem., 168, 193–207.
  • Khoshtinat Nikoo, M., and Amin, N. A. S. (2011). Thermodynamic analysis of carbon dioxide reforming of methane in view of solid carbon formation, Fuel Process. Technol, 92, 678–691.
  • Li, F., Tan, Q., Evans, D., and Duan, X. (2005). Synthesis of carbon nanotubes using a novel catalyst derived from hydrotalcite-like Co–Al layered double hydroxide precursor, Catal. Lett., 99, 151–156.
  • Reshetenko, T. V., Avdeeva, L. B., Khassin, A. A., Kustova, G. N., Ushakov, V. A., Moroz, E. M., Shmakov, A. N., Kriventsov, V. V., Kochubey, D. I., Pavlyukhin, Y. T., Chuvilin, A. L., and Ismagilov, Z. R. (2004). Coprecipitated iron-containing catalysts (Fe-Al2O3, Fe-Co-Al2O3, Fe-Ni-Al2O3) for methane decomposition at moderate temperatures I. Genesis of calcined and reduced catalysts, Appl. Catal., A Gen., 268, 127–138.
  • Ross, J. R. H. (2005). Natural gas reforming and CO2 mitigation, Catal. Today, 100, 151–158.
  • Rostrup-Nielsen, J. R., and Hansen, J. H. B. (1993). CO2-Reforming of methane over transition metals, J. Catal., 144, 38–49.
  • San-José-Alonso, D., Juan-Juan, J., Illán-Gómez, M. J., and Román-Martínez, M. C. (2009). Ni, Co and bimetallic Ni–Co catalysts for the dry reforming of methane, Appl. Catal., A Gen., 371, 54–59.
  • Serrano-Lotina, A., and Daza, L. (2014). Influence of the operating parameters over dry reforming of methane to syngas, Int. J. Hydrog. Energy, 39, 4089–4094.
  • Souza, G., Marcilio, N. R., and Perez-Lopez, O. W. (2013). Reforma a seco do metano em temperaturas moderadas sobre catalisadores Co-Al co-precipitados modificados com metal alcalino, in: Proceedings of the 17°Congresso Brasileiro de Catálise e VII Congresso de Catálise do Mercosul, SBCat, Gramado, pp. OR2–65.
  • Takanabe, K., Nagaoka, K., Nariai, K., and Aika, K.-I. (2005). Titania-supported cobalt and nickel bimetallic catalysts for carbon dioxide reforming of methane, J. Catal., 232, 268–275.
  • Trifiró, F., and Vaccari, A. (1996). Hydrotalcite-like anionic clays (layer double hydroxides), in: Comprehensive Supramolecular Chemistry, eds. G. Alberti and T. Bein, vol. 257., Oxford, Pergamon, pp. 251.
  • Vaccari, A. (1998). Preparation and catalytic properties of cationic and anionic clays, Catal. Today, 41, 53–71.
  • Vaccari, A. (1999). Clays and catalysis: A promising future, Appl. Clay Sci., 14, 161–198.
  • Xu, W., Liu, X., Ren, J., Liu, H., Ma, Y., Wang, Y., and Lu, G. (2011). Synthesis of nanosized mesoporous Co–Al spinel and its application as solid base catalyst, Microporous Mesoporous Mater., 142, 251–257.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.