228
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Adsorption reaction and diffusion based-models with solid-phase concentration-dependent coefficient for adsorption of reactive dye

, , &
Accepted author version posted online: 18 Nov 2015
Accepted author version

References

  • Ayanda, O. S., Adeyi, O., Durojaiye, B., and Olafisoye, O. (2012). Adsorption Kinetics and Intraparticulate Diffusivities of Congo Red onto Kola Nut Pod Carbon, Pol. J. Environ. Stud., 21, 1147–1152.
  • Banat, I. M., Nigam, P., Singh, D., and Marchant, R. (1996). Microbial decolorization of textile-dye-containing effluents: a review, Bioresour. Technol., 58, 217–227.
  • Banerjee, P., DasGupta, S., and De, S. (2007). Removal of dye from aqueous solution using a combination of advanced oxidation process and nanofiltration, J. Hazard. Mater., 140, 95–103.
  • Boyd, G., Adamson, A., and Myers Jr., L. (1947). The exchange adsorption of ions from aqueous solutions by organic zeolites. II. Kinetics1, J. Am. Chem. Soc., 69, 2836–2848.
  • Castro, E., Avellaneda, A., and Marco, P. (2014). Combination of Advanced Oxidation Processes and Biological Treatment for the Removal of Benzidine-Derived Dyes, Environ. Prog. Sust. Ener., 33, 873–885.
  • Chatterjee, A., and Schiewer, S. (2014). Multi-resistance kinetic models for biosorption of Cd by raw and immobilized citrus peels in batch and packed-bed columns, Chem. Eng. J., 244, 105–116.
  • Cheung, W. H., Szeto, Y. S., and McKay, G. (2006). Intraparticle diffusion processes during acid dye adsorption onto chitosan, Bioresource Technology, 98, 2897–2904.
  • Crank, J. (1975). The mathematics of diffusion, Oxford University Press, Oxford.
  • Crini, G. (2006). Non-conventional low-cost adsorbents for dye removal: A review, Bioresour. Technol., 97, 1061–1085.
  • Danckwerts, P. V. (1953). Continuous flow systems, Chem. Eng. Sci., 2, 1–13.
  • Dizge, N., Aydiner, C., Demirbas, E., Kobya, M., and Kara, S. (2008). Adsorption of reactive dyes from aqueous solutions by fly ash: kinetic and equilibrium studies, J. Hazard. Mater., 150, 737–746.
  • Easton, J. R. (1995). The dye maker's view. In: Cooper, P. (Ed.), Colour in dyehouse effluent. Society of Dyers and Colourists, Bradford.
  • Glueckauf, E. (1955). Theory of chromatography. Part 10. Formula for diffusion into spheres and their application to chromatography, T. FARADAY SOC., 51, 1540–1551.
  • Hand, D. W., Crittenden, J. C., and Thacker, W. E. (1984). Simplified models for design of fixed-bed adsorption systems, J. Environ. Eng., 110, 440–456.
  • Jia, Q., and Lua, A. C. (2008). Concentration-dependent branched pore kinetic model for aqueous phase adsorption, Chem. Eng. J., 136, 227–235.
  • Karpinska, A. M., Boaventura, R. A. R., Vilar, V. J. P., Bilyk, A., and Molczan, M. (2013). Applicability of MIEX®DOC process for organics removal from NOM laden water, Environ. Sci. Pollut. Res., 20, 3890–3899.
  • Khalid, A., Arshad, M., and Crowley, D. E. (2009). Biodegradation potential of pure and mixed bacterial cultures for removal of 4-nitroaniline from textile dye wastewater, Water Res., 43, 1110–1116.
  • Kim, M., Bae, Y., Choi, D., and Lee, C. (2006). Kinetic Separation of Landfill Gas by a Two-Bed Pressure Swing Adsorption Process Packed with Carbon Molecular Sieve: Nonisothermal Operation, Industrial & Engineering Chemistry Research, 45, 5050–5058.
  • Klett, C., Barry, A., Balti, I., Lelli, P., Schoenstein, F., and Jouini, N. (2014). Nickel doped zinc oxide as a potential sorbent for decolorization of specific dyes, methylorange and tartrazine by adsorption process, J. Environ. Chem. Eng., 2, 914–926.
  • Lee, V. K. C., Porter, J. F., McKay, G., and Mathews, A. P. (2005). Application of solid-phase concentration-dependent HSDM to the acid dye adsorption system, AIChE Journal, 51, 323–332.
  • Li, H., Guo, J., Yang, L., and Lan, Y. (2014). Degradation of methyl orange by sodium persulfate activated with zero-valent zinc, Sep. Purif. Technol., 132, 168–173.
  • Mathews, A., and Weber, W. (1977). Effects of external mass transfer and intraparticle diffusion on adsorption rates in slurry reactors, AlChE Symp. Ser., 73, 91–98.
  • McKay, G. (1995). Use of adsorbents for the removal of pollutants from wastewaters. CRC Press, New York.
  • Mittal, A., Kurup, L., and Mittal, J. (2007). Freundlich and Langmuir adsorption isotherms and kinetics for the removal of tartrazine from aqueous solutions using hen feathers, J. Hazard. Mater., 146, 243–248.
  • Mittal, A., Mittal, J., and Kurup, L. (2006). Adsorption isotherms, kinetics and column operations for the removal of hazardous dye, tartrazine from aqueous solutions using waste materials—bottom ash and de-oiled soya, as adsorbents, J. Hazard. Mater., B136, 567–578.
  • Neretnieks, I. (1976). Adsorption in finite bath and countercurrent flow with systems having a concentration dependant coefficient of diffusion, Chem. Eng. Sci., 31, 465–471.
  • Nidheesh, P. V., and Gandhimathi, R. (2014). Electro Fenton oxidation for the removal of Rhodamine B from aqueous solution in a bubble column reactor under continuous mode. Desalin. Water Treat., doi: 10.1080/19443994.2014.913266
  • Nigam, P., Armour, G., Banat, I. M., Singh, D., and Marchant, R. (2000). Physical removal of textile dyes and solid state fermentation of dye adsorbed agricultural residues, Bioresour. Technol., 72, 219–226.
  • Pereira, L., and Alves, M. (2012). Dyes-Environmental Impact and Remediation, in: Malik, A. Grohmann, E. (Eds.), Environmental Protection Strategies for Sustainable Development, Springer, Berlin.
  • Plazinski, W., Rudzinski, W., and Plazinska, A. (2009). Theoretical models of sorption kinetics including a surface reaction mechanism: A review, Adv. Colloid Interface Sci., 152, 2–13.
  • Rai, H. S., Bhattacharyya, M. S., Singh, J., Bansal, T. K., Vats, P., and Banerjee, U. C. (2005). Removal of Dyes from the Effluent of Textile and Dyestuff Manufacturing Industry: A review of emerging techniques with reference to biological treatment, Crit. Rev. Env. Sci. Technol., 35, 219–238.
  • Robinson, T., McMullan, G., Marchant, R., and Nigam, P. (2001). Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative, Bioresour. Technol., 77, 247–255.
  • Sarıcı-Özdemir, Ç. (2012). Modeling of tartrazine adsorption onto activated carbon fiber in a continuous fixed-bed reactor, Desalin. Water Treat., 46, 234–243.
  • Selim, H. M., and Zhang, H. (2013). Modeling Approaches of Competitive Sorption and Transport of Trace Metals and Metalloids in Soils: A Review, J. Environ. Qual., 42, 640–653.
  • Shafeeyan, M. S., Daud, W. M. A. W., and Shamiri, A. (2014). A review of mathematical modeling of fixed-bed columns for carbon dioxide adsorption, Chem. Eng. Res. Des., 92, 961–988.
  • Shao, Y., Zhang, H., and Yan, Y. (2014). Characterization of P-nitrophenol adsorption kinetic properties in batch and fixed bed adsorbers, J. Wuhan Univ. Technol.-Mat. Sci. Edit., 29, 1152–1160.
  • Sperlich, A., Schimmelpfennig, S., Baumgarten, B., Genz, A., Amy, G., Worch, E., and Jekel, M. (2008). Predicting anion breakthrough in granular ferric hydroxide (GFH) adsorption filters, Water Res., 42, 2073–2082.
  • Sun, J. H., Sun, S. P., Wang, G. L., and Qiao, L. P. (2007). Degradation of azo dye amido black 10B in aqueous solution by Fenton oxidation process, Dyes Pigm., 74, 647–652.
  • Suteu, D., Zaharia, C., and Malutan, T. (2011). Removal of Orange 16 reactive dye from aqueous solution by waste sunflower seed shells. J. Serb. Chem. Soc., 76, 607–624.
  • Tien, C. (1994). Adsorption calculations and modeling, Butterworth-Heinemann, Boston.
  • Viegas, R. M. C, Campinas, M., Costa, H., and Rosa, M. J. (2014). How do the HSDM and Boy's model compare for estimating intraparticle diffusion coefficients in adsorption processes. Adsorption, 20, 737–746.
  • Wawrzkiewicz, M. (2010). Application of weak base anion exchanger in sorption of tartrazine from aqueous medium, Solvent Extr. Ion Exch., 28, 845–863.
  • Wawrzkiewicz, M., and Hubicki, Z. (2009a). Removal of tartrazine from aqueous solutions by strongly basic polystryren anion exchange resins, J. Hazard. Mater., 164, 502–509.
  • Wawrzkiewicz, M., and Hubicki, Z. (2009b). Kinetic studies of dyes sorption from aqueous solutions onto the strongly basic anion-exchanger Lewatit MonoPlus M-600, Chem. Eng. J., 150, 509–515.
  • Worch, E. (2012). Adsortion technology in water treatment: fundamentals, processes, and modeling, Walter de Gruyter, Boston.
  • Xu, Z., Cai, J., and Pan, B. (2013). Mathematically modeling fixed-bed adsorption in aqueous systems, J. Zhejiang Univ-Sci. A (Appl. Phys. and Eng.), 14, 155–176.
  • Yu, S., Liu, M., Ma, M., Qi, M., Lü, Z., and Gao, C. (2010). Impacts of membrane properties on reactive dye removal from dye/salt mixtures by asymmetric cellulose acetate and composite polyamide nanofiltration membranes, J. Membr. Sci., 350, 83–91.
  • Zhang, J., Zhang, P., Zhang, S., and Zhou, Q. (2014b). Comparative study on the adsorption of tartrazine and indigo carmine onto Maize Cob Carbon, Sep. Sci. Technol., 49, 877–886.
  • Zhang, S., Zhang, Y., Bi, G., Liu, J., Wang, Z., Xu, Q., Xu, H., and Li, X. (2014a). Mussel-inspired polydopamine biopolymer decorated with magneticnanoparticles for multiple pollutants removal, J. Hazard. Mater., 270, 27–34.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.