371
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

Extraction of sugars from mixed microalgae culture using enzymatic hydrolysis: Experimental study and modeling

, &

References

  • Babujanarthanam, R., and Kavitha, P. (2014). Simultaneous saccharification and fermentation of dilute acid pretreated red algae (Gelidiella Acerosa) for bioethanol production, Energ Source Part A: Recovery, Util. Environ. Effects, 36(12), 1305–1314.
  • Balat, M. (2009). Bioethanol as a vehicular fuel: a critical review, Energ Source Part A, 31(14), 1242–1255.
  • Barrera, I., Amezcua-Allieri, M. A., Estupiñan, L., Martínez, T., and Aburto, J. (2016). Technical and economical evaluation of bioethanol production from lignocellulosic residues in Mexico: Case of sugarcane and blue agave bagasses, Chem Eng Res Des, 107, 91–101.
  • Batey, I. L. (1982). Starch analysis using thermostable alpha‐amylases, Starch‐Stärke, 34(4), 125–128.
  • Brányiková, I., Maršálková, B., Doucha, J., Brányik, T., Bišová, K., Zachleder, V., and Vítová, M. (2011). Microalgae—novel highly efficient starch producers, Biotechnol. Bioeng, 108(4), 766–776.
  • Cataldo, D. A, Maroon, M., Schrader, L. E., and Youngs, V. L. (1975). Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid 1, Commun Soil Sci Plant Anal, 6(1), 71–80.
  • Chang, C.-W., Yu, W.-C., Chen, W.-J., Chang, R.-F., and Kao, W.-S. (2011). A study on the enzymatic hydrolysis of steam exploded napiergrass with alkaline treatment using artificial neural networks and regression analysis, Taiwan Inst Chem Eng, 42(6), 889–894.
  • Chia, K. S., Abdul Rahim, H., and Abdul Rahim, R. (2012). Prediction of soluble solids content of pineapple via non-invasive low cost visible and shortwave near infrared spectroscopy and artificial neural network, Biosyst Eng, 113(2), 158–165.
  • Dragoi, Elena-Niculina, Curteanu, S., Cascaval, D., and Galaction, A-I. (2016). Artificial neural network modeling of mixing efficiency in a split-cylinder gas-lift bioreactor for Yarrowia Lipolytica suspensions, Chem. Eng. Commun, 203(12), 1600–1608.
  • Dyson, J. E. D, and Noltmann, E. A. (1968). The effect of pH and temperature on the kinetic parameters of Phosphoglucose isomerase participation of histidine and lysine in a proposed dual function mechanism, J. Biol. Chem, 243(7), 1401–1414.
  • Ferre-Aracil, J., Cardona, S. C., and Navarro-Laboulais, J. (2015). Ozonation kinetics of Acid Red 27 Azo dye: a novel methodology based on artificial neural networks for the determination of dynamic kinetic constants in bubble column reactors, Chem. Eng. Commun, 202(3), 279–293.
  • Michihiro, F., Homma, T., and Taniguchi, M. (1988). Synergism of α‐amylase and glucoamylase on hydrolysis of native starch granules, Biotechnol. Bioeng, 32(7), 910–915.
  • Gitifar, V., Eslamloueyan, R., and Sarshar, M. (2013). Experimental study and neural network modeling of sugarcane bagasse pretreatment with H2SO4 and O3 for cellulosic material conversion to sugar, Bioresource Technol, 148, 47–52.
  • Harun, R., and Danquah, M. K. (2011). Enzymatic hydrolysis of microalgal biomass for bioethanol production, Chem. Eng. J, 168(3), 1079–1084.
  • Hassanpour, M., Abbasabadi, M., Ebrahimi, S., Hosseini, M., and Sheikhbaglou, A. (2015). Gravimetric enrichment of high lipid and starch accumulating microalgae, Bioresource Technol., 196, 17–21.
  • Hedge, J. E., and Hofreiter, B. T. (1962). Estimation of Carbohydrate. Methods in Carbohydrate Chemistry, Academic Press, New York, 17–22.
  • Ho, S-H., Huang, S. W., Chen, C. Y., Hasunuma, T., Kondo, A., and Chang, J. S. (2013). Bioethanol production using carbohydrate-rich microalgae biomass as feedstock, Bioresource Technol, 135, 191–198.
  • Ibrahim, O. M. (2013). A comparison of methods for assessing the relative importance of input variables in artificial neural networks, JASR, 9(11), 5692–5700.
  • Jaya, E. M. J., Norhalim, N. A., and Ahmad, Z. (2014). Artificial neural network model prediction of glucose by enzymatic hydrolysis of rice straw, J. Eng. Sci, 10, 85.
  • Jiahua, Z. (1999). Kinetic model for the co‐action of β‐amylase and debranching enzymes in the production of maltose, Biotechnol. Bioeng, 62(5), 618–622.
  • Jones, C. K., and Yang, R. Y. K. (1980). Simultaneous enzymatic hydrolysis of cellulose and sucrose, Chem. Eng. Commun, 6(4–5), 283–291.
  • Khataee, A. R., and Mirzajani, O. (2010). UV/peroxydisulfate oxidation of CI Basic Blue 3: modeling of key factors by artificial neural network, Desalination, 251(1), 64–69.
  • Marchal, L. M., Jonkers, J., Franke, G. T., de Gooijer, C. D., and Tramper, J. (1999). The effect of process conditions on the a-amylolytic hydrolysis of amylopectin potato starch an experimental design approach, Biotechnol. Bioeng, 62(3), 348–357.
  • Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar, Anal. Chem, 31(3), 426–428.
  • Mooij, P. R, Stouten, G. R., Tamis, J., van Loosdrecht, M. C. M., and Kleerebezem, R. (2013). Survival of the fattest, Energy Environ Sci, 6(12), 3404–3406.
  • Mtui, G. Y. S. (2009). Recent advances in pretreatment of lignocellulosic wastes and production of value added products, Afr. J. Biotechnol, 8(8), 1398–1415.
  • Nigam, P. S., and Anoop, S. (2011). Production of liquid biofuels from renewable resources, Prog. Energy Combust. Sci, 37(1), 52–68.
  • Nikzad, M., Movagharnejad, K., Talebnia, F., Aghaiy, Z., and Mighani, M. (2015). Modeling of alkali pretreatment of rice husk using response surface methodology and artificial neural network, Chem. Eng. Commun., 202(6), 728–738.
  • Olsson, L., Jørgensen, H., Morkeberg Krogh, K. B. R., and Roca, C. (2005). Bioethanol production from lignocellulosic material, Polysaccharides, 957–993.
  • Park, J. T, and Rollings, J. E. (1994). Effects of substrate branching characteristics on kinetics of enzymatic depolymerizaion of mixed linear and branched polysaccharides: I. Amylose/amylopectin α‐amylolysis, Biotechnol. Bioeng, 44(7), 792–800.
  • Pasari, A. B., Korus, R. A., and Heimsch, R. C. (1988). Kinetics of the amylase system of Schwanniomyces castellii, Enzyme Microb. Technol, 10(3), 156–160.
  • Ryu, D. D., and Lee, S. B. (1986). Enzymatic hydrolysis of cellulose: determination of kinetic parameters, Chem. Eng. Commun, 45(1–6), 119–134.
  • Saha, B. C., and Cotta, M. A. (2007). Enzymatic hydrolysis and fermentation of lime pretreated wheat straw to ethanol, J. Chem. Technol. Biotechnol, 82(10), 913–919.
  • Sahoo, G. B.i, and Ray, C. (2006). Predicting flux decline in cross-flow membranes using artificial neural networks and genetic algorithms, J. Membr. Sci, 283, 147–157.
  • Scholz, M. J., Riley, M. R., and Cuello, J. L. (2013). Acid hydrolysis and fermentation of microalgal starches to ethanol by the yeast Saccharomyces cerevisiae, Biomass Bioenerg, 48, 9–65.
  • Shokrkar, H., Salahi, A., Kasiri, N., and Mohammadi, T. (2011). Mullite ceramic membranes for industrial oily wastewater treatment: experimental and neural network modeling, Water Sci. Technol, 64(3), 670–676.
  • Shokrkar, H., Ebrahimi, S., and Zamani, M. (2017). Bioethanol production from acidic and enzymatic hydrolysates of mixed microalgae culture, Fuel, 200, 380–386.
  • Statistical Neural Networks (2000). User’s Manual, Release 4.0 F. Statsoft, Tulsa, OK.
  • Vaferi, B., Eslamloueyan, R., and Ayatollahi, S. (2011). Automatic recognition of oil reservoir models from well testing data by using multi-layer perceptron networks, J Pet Sci Eng, 77(3), 254–262.
  • Yao, C., Ai, J., Cao, X., Xue, S., and Zhang, W. (2012). Enhancing starch production of a marine green microalga Tetraselmis subcordiformis through nutrient limitation, Bioresource Technol, 118, 438–444.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.