317
Views
30
CrossRef citations to date
0
Altmetric
Original Articles

Response surface methodology approach for the optimization of tartrazine removal by heterogeneous photo-Fenton process using mesostructured Fe2O3-suppoted ZSM-5 prepared by chitin-templating

, , , , , , & show all

References

  • Ahmadi, M., Vahabzadeh, F., Bonakdarpour, B., Mofarrah, E., and Mehranian, M. (2005). Application of the central composite design and response surface methodology to the advanced treatment of olive oil processing wastewater using Fenton’s peroxidation, J. Hazard. Mater., 123, 187–195.
  • Akay, U., and Demirtas, E. A. (2015). Degradation of burazol blue ED by heterogeneous Fenton process: simultaneous optimization by central composite design, Des. Water Treat., 56, 3346–3356.
  • Anchieta, C. G., Cancelier, A., Mazutti, M. A., Jahn, S. L., Kuhn, R. C., Gündel, A., Chiavone-Filho, O., and Foletto, E. L. (2014). Effects of solvent diols on the synthesis of ZnFe2O4 particles and their use as heterogeneous photo-Fenton catalysts, Materials, 7, 6281–6290.
  • Anchieta, C. G., Severo, E. C., Rigo, C., Mazutti, M. A., Kuhn, R. C., Muller, E. I., Flores, E. M. M., Moreira, R. F. P. M., and Foletto, E. L. (2015). Rapid and facile preparation of zinc ferrite (ZnFe2O4) oxide by microwave-solvothermal technique and its catalytic activity in heterogeneous photo-Fenton reaction, Mater. Chem. Phys., 160, 141–147.
  • Arslan-Alaton, I., Tureli, G., and Olmez-Hanci, T. (2009). Treatment of azo dye production wastewaters using photo-Fenton-like advanced oxidation processes: Optimization by response surface methodology, J. Photochem. Photobiol. A Chem., 202, 142–153.
  • Banerjee, S., and Chattopadhyaya, M. C. (2017). Characteristics for the removal of a toxic dye, tartrazine from aqueous solutions by a low cost agricultural by-product, Arabian J. Chem., 10, 1629–1638.
  • Boczkaj, G., and Fernandes, A. (2017). Wastewater treatment by means of advanced oxidation processes at basic pH conditions: A review, Chem. Eng. J., 320, 608–633.
  • Chekir, N., Tassalit, D., Benhabiles, O., Merzouk, N. K., Ghenna, M., Abdessemed, A., and Issaadi, R. (2017). A comparative study of tartrazine degradation using UV and solar fixed bed reactors, Inter. J. Hydrogen Energy, 42, 8948–8954.
  • Chen, A., Ma, X., and Sun, H. (2008). Decolorization of KN-R catalyzed by Fe-containing Y and ZSM-5 zeolites, J. Hazard. Mater., 156, 568–575.
  • Chen, K., Wang, G. H., Bing, W. L., Wan, D., Hu, Q., and Lu, L. L. (2014). Application of response surface methodology for optimization of Orange II removal by heterogeneous Fenton-like process using Fe3O4 nanoparticles, Chinese Chem. Lett., 25, 1455–1460.
  • Chou, Y. H., Cundy, C. S., Garforth, A. A., and Zholobenko, V. L. (2006). Mesoporous ZSM-5 catalysts: Preparation, characterization and catalytic properties. Part I: Comparison of different synthesis routes, Microp. Mesop. Mater., 89, 78–87.
  • Combes, R. D., and Haveland-Smith, R. B. (1982). A review of the genotoxicity of food, drug and cosmetic colours and other azo, triphenylmethane and xanthene dyes. Mutation Res., 98, 101–248.
  • Dang, H. T., Nguyen, T. M. T., Nguyen, T. T., Thi, S. Q., Tran, H. T., Tran, H. Q., and Le, T. K. (2016). Magnetic CuFe2O4 prepared by polymeric precursor method as a reusable heterogeneous Fenton-like catalyst for the efficient removal of methylene blue, Chem. Eng. Commun., 203, 1260–1268.
  • Dotto, G. L., Santos, J. M. N., Moura, J. M., and Pinto, L. A. A. (2016). Ultrasound-assisted treatment of chitin: evaluation of physicochemical characteristics and dye removal potential, e-Polymers, 16, 49–56.
  • Fujiwara, M., Kitabayashi, T., Shiokawa, K., and Moriuchi, T. K. (2008). Sealing and reopening of micropores of mordenite and ZSM-5 by disilylbenzene compounds, Microp. Mesop. Mater., 115, 556–561.
  • Gao, Y., Gan, H., Zhang, G., and Guo, Y. (2013). Visible light assisted Fenton-like degradation of rhodamine B and 4-nitrophenol solutions with a stable poly-hydroxyl-iron/sepiolite catalyst, Chem. Eng. J., 217, 221–230.
  • Gao, Y., Wang, Y., and Zhang, H. (2015). Removal of Rhodamine B with Fe-supported bentonite as heterogeneous photo-Fenton catalyst under visible irradiation, Appl. Catal.: Environ., 178, 29–36.
  • Georgin, J., Dotto, G. L., Mazutti, M. A., and Foletto, E. L. (2016). Preparation of activated carbon from peanut shell by conventional pyrolysis and microwave irradiation-pyrolysis to remove organic dyes from aqueous solutions, J. Environ. Chem. Eng., 4, 266–275.
  • Jin, J., Zhang, X., Li, Y., Li, H., Wu, W., Cui, Y., Chen, Q., Li, L., Gu, J., Zhao, W., and Shi, J. (2012). A simple route to synthesize mesoporous ZSM-5 templated by ammonium-modified chitosan, Chem. A Eur. J., 18, 16549–16555.
  • Kasiri, M. B., Aleboyeh, H., and Aleboyeh, A. (2008). Degradation of acid blue 74 using Fe-ZSM5 zeolite as a heterogeneous photo-Fenton catalyst, Appl. Catal. B Environ., 84, 9–15.
  • Khataee, A. R., Zarei, M., and Moradkhannejhad, L. (2010). Application of response surface methodology for optimization of azo dye removal by oxalate catalyzed photoelectro-Fenton process using carbon nanotube-PTFE cathode, Desalination, 258, 112–119.
  • Kumar, A., Priyadarshinee, R., Singha, S., Dasgupta, D., and Mandal, T. (2016). Rice husk ash-based silica-supported iron catalyst coupled with Fenton-like process for the abatement of rice mill wastewater, Clean Technol. Environ. Policy, 18, 2565–2577.
  • MacDonald, M. J., Wu, Z., Ruzicka, J. Y., Golovko, V., Tsang, D. C. W., and Yip, A. C. K. (2014). Catalytic consequences of charge-balancing cations in zeolite during photo-Fenton oxidation of formaldehyde in alkaline conditions, Sep. Purif. Technol., 125, 269–274.
  • Mirzaei, A., Chen, Z., Haghighat, F., and Yerushalmi, L. (2017). Removal of pharmaceuticals from water by homo/heterogonous Fenton-type processes – A review, Chemosphere, 174, 665–688.
  • Myers, R. H., and Montgomery, D. C. (2002). Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 2nd ed., John Wiley & Sons, New York.
  • Oancea, P., and Meltzer V. (2014). Kinetics of tartrazine photodegradation by UV/H2O2 in aqueous solution, Chem. Papers, 68, 105–111.
  • Oliveira, J. S., Mazutti, M. A., Urquieta-González, E. A., Foletto, E. L., and Jahn, S. L. (2016). Preparation of mesoporous Fe2O3-supported ZSM-5 zeolites by carbon-templating and their evaluation as photo-Fenton catalysts to degrade organic pollutant, Mat. Res., 19, 1399–1406.
  • Pignatello, J. J. (1992). Dark and photoassisted Fe3+ catalyzed degradation of chlorophenox herbicides by hydrogen peroxide, Environ. Sci. Technol., 26, 944–951.
  • Santos, T. C., Zocolo, G. J., Morales, D. A., Umbuzeiro, G. A., and Zanoni M. V. B. (2014). Assessment of the breakdown products of solar/UV induced photolytic degradation of food dye tartrazine, Food Chem. Toxicol., 68, 307–315.
  • Sashkina, K. A., Labko, V. S., Rudina, N. A., Parmon, V. N., and Parkhomchuk, E. V. (2013). Hierarchical zeolite FeZSM-5 as a heterogeneous Fenton-type catalyst, J. Catal., 299, 44–52.
  • Sashkina, K. A., Parkhomchuk, E. V., Rudina, N. A., and Parmon, V. N. (2014). The role of zeolite Fe-ZSM-5 porous structure for heterogeneous Fenton catalyst activity and stability, Microp. Mesop. Mater., 189, 181–188.
  • Severo, E. C., Anchieta, C. G., Foletto, V. S., Kuhn, R. C., Collazzo, G. C., Mazutti, M. A., and Foletto, E. L. (2016). Degradation of Amaranth azo dye in water by heterogeneous photo-Fenton process using FeWO4 catalyst prepared by microwave irradiation, Water Sci. Technol., 73, 88–94.
  • Sheydaei, M., Aber, S., and Khataee, A. (2014). Preparation of a novel FeOOH-GAC nano composite for decolorization of textile wastewater by photo Fenton-like process in a continuous reactor, J. Mol. Catal. A Chem., 392, 229–234.
  • Singh, S. N. (2015). Microbial Degradation of Synthetic Dyes in Wastewaters, Springer International Publishing, Cham, Switzerland.
  • Su, Y., Wu, Z., Wu, Y., Yu, J., Sun, L., and Lin, C. (2015). Acid orange II degradation through a heterogeneous Fenton-like reaction using Fe–TiO2 nanotube arrays as a photocatalyst, J. Mater. Chem. A, 3, 8537–8544.
  • USEPA (United States Environmental Protection Agency), Iron : Water Quality Standards Criteria Summaries: A Compilation of State/Federal Criteria. EPA 440/5‐88/022, 1988. https://nepis.epa.gov/Exe/ZyNET.exe/91018AGP.txt?ZyActionD=ZyDocument&Client=EPA&Index=1986%20Thru%201990&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&UseQField=&IntQFieldOp=0&ExtQFieldOp=0&XmlQuery=&File=D%3A%5CZYFILES%5CINDEX%20DATA%5C86THRU90%5CTXT%5C00000028%5C91018AGP.txt&User=ANONYMOUS&Password=anonymous&SortMethod=h%7C-&MaximumDocuments=1&FuzzyDegree=0&ImageQuality=r75g8/r75g8/x150y150g16/i425&Display=hpfr&DefSeekPage=x&SearchBack=ZyActionL&Back=ZyActionS&BackDesc=Results%20page&MaximumPages=1&ZyEntry=1&slide. (accessed May 06, 2017).
  • Vaizoğullar, A. İ. (2017). TiO2/ZnO supported on sepiolite: Preparation, structural characterization, and photocatalytic degradation of flumequine antibiotic in aqueous solution, Chem. Eng. Commun., 204, 695–703.
  • Wawrzkiewicz, M., and Hubicki, Z. (2009). Removal of tartrazine from aqueous solutions by strongly basic polystyrene anion exchange resins, J. Hazard. Mater., 164, 502–509.
  • Xu, H. Y., Qi, S. Y., Li, Y., Zhao, Y., and Li, J. W. (2013). Heterogeneous Fenton-like discoloration of Rhodamine B using natural schorl as catalyst: Optimization by response surface methodology, Environ. Sci. Pollut. Res., 20, 5764–5772.
  • Xu, H. Y., Zhao, H,. Cao, N. P., Liu, Q., and Qi, S. Y. (2016). Heterogeneous Fenton-like discoloration of organic dyes catalyzed by porous schorl ceramisite, Water Sci. Technol., 74, 2417–2426.
  • Zepeda, T. A., Pawelec, B., Fierro, J. L. G., Olivas, A., Fuentes, S., and Halachev, T. (2008). Effect of Al and Ti content in HMS material on the catalytic activity of NiMo and CoMo hydrotreating catalysts in the HDS of DBT, Microp. Mesop. Mater., 111, 157–170.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.