252
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Experimental and theoretical investigation of thermal conductivity of some water-based nanofluids

, , , , &

References

  • Ahammed, N., Asirvatham, L. G., Titus, J., Bose, J. R., and Wongwises, S. (2016). Measurement of thermal conductivity of graphene–water nanofluid at below and above ambient temperatures, Int. Commun. Heat Mass Transfer, 70, 66–74.
  • Aybar, H. Ş., Sharifpur, M., Azizian, M. R., Mehrabi, M., and Meyer, J. P. (2015). A review of thermal conductivity models for nanofluids, Heat Transfer Eng., 36, 1085–1110.
  • Baby, T. T., and Ramaprabhu, S. (2010). Investigation of thermal and electrical conductivity of graphene based nanofluids, J. Appl. Phys., 108, 124308.
  • Beck, M. P., Yuan, Y., Warrier, P., and Teja, A. S. (2010). The thermal conductivity of alumina nanofluids in water, ethylene glycol, and ethylene glycol + water mixtures, J. Nanoparticle Res., 12, 1469–1477.
  • Bergman, T. L., and Incropera, F. P. (2011). Introduction to Heat Transfer, John Wiley & Sons, New Jersey.
  • Bruggeman, V. D. (1935). Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen, Annalen der physik, 416, 636–664.
  • Burdett, J. K., Hughbanks, T., Miller, G. J., Richardson, J. W., and Smith, J. V. (1987). Structural-electronic relationships in inorganic solids: Powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K, J. Am. Chem. Soc., 109, 3639–3646.
  • Davis, R. (1986). The effective thermal conductivity of a composite material with spherical inclusions, Int. J. Thermophysics, 7, 609–620.
  • Dhar, P., Sen Gupta, S., Chakraborty, S., Pattamatta, A., and Das, S. K. (2013). The role of percolation and sheet dynamics during heat conduction in poly-dispersed graphene nanofluids, Appl. Phys. Lett., 102, 163114.
  • Ding, Y., Alias, H., Wen, D., and Williams, R. A. (2006). Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids), Int. J. Heat Mass Transfer, 49, 240–250.
  • Duangthongsuk, W., and Wongwises, S. (2009). Measurement of temperature-dependent thermal conductivity and viscosity of TiO2–water nanofluids, Exp. Therm. Fluid Sci., 33, 706–714.
  • Eastman, J. A., Choi, S., Li, S., Yu, W., and Thompson, L. (2001). Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles, Appl. Phys. Lett., 78, 718–720.
  • Fedele, L., Colla, L., and Bobbo, S. (2012). Viscosity and thermal conductivity measurements of water-based nanofluids containing titanium oxide nanoparticles, Int. J. Refrig., 35, 1359–1366.
  • Fujii, M., Zhang, X., Xie, H., Ago, H., Takahashi, K., Ikuta, T., Abe, H., and Shimizu, T. (2005). Measuring the thermal conductivity of a single carbon nanotube, Phys. Rev. Lett., 95, 065502.
  • Gao, L., Zhou, X., and Ding, Y. (2007). Effective thermal and electrical conductivity of carbon nanotube composites, Chem. Phys. Lett., 434, 297–300.
  • Greenwood, R., and Kendall, K. (1999). Selection of suitable dispersants for aqueous suspensions of zirconia and titania powders using acoustophoresis, J. Eur. Ceram. Soc., 19, 479–488.
  • Hajjar, Z., Morad Rashidi, A., and Ghozatloo, A. (2014). Enhanced thermal conductivities of graphene oxide nanofluids, Int. Commun. Heat Mass Transfer, 57, 128–131.
  • Hamilton, R., and Crosser, O. (1962). Thermal conductivity of heterogeneous two-component systems, Ind. Eng. Chem. Fundam., 1, 187–191.
  • Hanaor, D., Michelazzi, M., Leonelli, C., and Sorrell, C. C. (2012). The effects of carboxylic acids on the aqueous dispersion and electrophoretic deposition of ZrO2, J. Eur. Ceram. Soc., 32, 235–244.
  • Ishizawa, N., Miyata, T., Minato, I., Marumo, F., and Iwai, S. (1980). A structural investigation of α-Al2O3 at 2170 K, Acta Crystallogr. B, 36, 228–230.
  • Jahanshahi, M., Hosseinizadeh, S., Alipanah, M., Dehghani, A., and Vakilinejad, G. (2010). Numerical simulation of free convection based on experimental measured conductivity in a square cavity using water/SiO2 nanofluid, Int. Commun. Heat Mass Transfer, 37, 687–694.
  • Jeffrey, D. J. (1973). Conduction through a random suspension of spheres, Proc. R. Soc. Lond. A., 335.
  • Kazemi-Beydokhti, A., Heris, S. Z., Moghadam, N., Shariati-Niasar, M., and Hamidi, A. (2014). Experimental investigation of parameters affecting nanofluid effective thermal conductivity, Chem. Eng. Commun., 201, 593–611.
  • Keblinski, P., Phillpot, S., Choi, S., and Eastman, J. (2002). Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids), Int. J. Heat Mass Transfer, 45, 855–863.
  • Khanafer, K., and Vafai, K. (2011). A critical synthesis of thermophysical characteristics of nanofluids, Int. J. Heat Mass Transfer, 54(19), 4410–4428.
  • Kumar, D. H., Patel, H. E., Kumar, V. R., Sundararajan, T., Pradeep, T., and Das, S. K. (2004). Model for heat conduction in nanofluids, Phys. Rev. Lett., 93, 144301.
  • Lee, S., Choi, S. S., Li, S. A., and Eastman, J. A. (1999). Measuring thermal conductivity of fluids containing oxide nanoparticles, J. Heat Transfer, 121, 280–289.
  • Li, C. H., and Peterson, G. (2006). Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids), J. Appl. Phys., 99, 084314.
  • Li, S., and Eastman, J. (1999). Measuring thermal conductivity of fluids containing oxide nanoparticles, J. Heat Transfer, 121, 280–289.
  • Lu, S. Y., and Lin, H. C. (1996). Effective conductivity of composites containing aligned spheroidal inclusions of finite conductivity, J. Appl. Phys., 79, 6761–6769.
  • Nan, C. W., Shi, Z., and Lin, Y. (2003). A simple model for thermal conductivity of carbon nanotube-based composites, Chem. Phys. Lett., 375, 666–669.
  • Pang, C., Jung, J. Y., Lee, J. W., and Kang, Y. T. (2012). Thermal conductivity measurement of methanol-based nanofluids with Al2O3 and SiO2 nanoparticles, Int. J. Heat Mass Transfer, 55(21), 5597–5602.
  • Prasher, R., Evans, W., Meakin, P., Fish, J., Phelan, P., and Keblinski, P. (2006). Effect of aggregation on thermal conduction in colloidal nanofluids, Appl. Phys. Lett., 89, 143119.
  • Sastry, N. V., Bhunia, A., Sundararajan, T., and Das, S. K. (2008). Predicting the effective thermal conductivity of carbon nanotube based nanofluids, Nanotechnology, 19, 055704.
  • Sen Gupta, S., Manoj Siva, V., Krishnan, S., Sreeprasad, T., Singh, P. K., Pradeep, T., and Das, S. K. (2011). Thermal conductivity enhancement of nanofluids containing graphene nanosheets, J. Appl. Phys., 110, 084302.
  • Teng, T. P., Hung, Y. H., Teng, T. C., Mo, H. E., and Hsu, H. G. (2010). The effect of alumina/water nanofluid particle size on thermal conductivity, Appl. Therm. Eng., 30, 2213–2218.
  • Timofeeva, E. V., Gavrilov, A. N., McCloskey, J. M., Tolmachev, Y. V., Sprunt, S., Lopatina, L. M., and Selinger, J. V. (2007). Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory, Phys. Rev. E, 76, 061203.
  • Vakili-Nezhaad, G., and Dorany, A. (2009). Investigation of the effect of multiwalled carbon nanotubes on the viscosity index of lube oil cuts, Chem. Eng. Commun., 196, 997–1007.
  • Vakili-Nezhaad, G., and Dorany, A. (2012). Effect of single-walled carbon nanotube on the viscosity of lubricants, Energy Procedia, 14, 512–517.
  • Wang, B., Wang, X., Lou, W., and Hao, J. (2012). Thermal conductivity and rheological properties of graphite/oil nanofluids, Colloids Surf. A, 414, 125–131.
  • Wang, B. X., Zhou, L. P., and Peng, X. F. (2003). A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles, Int. J. Heat Mass Transfer, 46, 2665–2672.
  • Xuan, Y., and Li, Q. (2000). Heat transfer enhancement of nanofluids, Int. J. Heat Fluid Flow, 21, 58–64.
  • Xue, L., Keblinski, P., Phillpot, S., Choi, S.-S., and Eastman, J. (2004). Effect of liquid layering at the liquid–solid interface on thermal transport, Int. J. Heat Mass Transfer, 47, 4277–4284.
  • Xue, Q., and Xu, W. M. (2005). A model of thermal conductivity of nanofluids with interfacial shells, Mater. Chem. Phys., 90, 298–301.
  • Yu, W., and Choi, S. (2003). The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Maxwell model, J. Nanopart. Res., 5, 167–171.
  • Yu, W., and Choi, S. (2004). The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Hamilton–Crosser model, J. Nanopart. Res., 6, 355–361.
  • Yu, W., France, D. M., Routbort, J. L., and Choi, S. U. (2008). Review and comparison of nanofluid thermal conductivity and heat transfer enhancements, Heat Transfer Eng., 29, 432–460.
  • Zhu, D., Li, X., Wang, N., Wang, X., Gao, J., and Li, H. (2009). Dispersion behavior and thermal conductivity characteristics of Al2O3–H2O nanofluids, Current Applied Physics, 9, 131–139.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.