149
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Catalytic wet peroxide oxidation of 4-Nitrophenol over Al–Fe PILC: Kinetic study using Fermi’s equation and mechanistic pathways based on TOC reduction

, &

References

  • Ayodele, O. B., and Hameed, B. H. (2013a). Development of kaolinite supported ferric oxalate heterogeneous catalyst for degradation of 4-nitrophenol in photo-Fenton process, Appl. Clay Sci., 83, 171–181.
  • Ayodele, O. B., and Hameed, B. H. (2013b). Synthesis of copper pillared bentonite ferrioxalate catalyst for degradation of 4-nitrophenol in visible light assisted Fenton process, J. Ind. Eng. Chem., 19, 966–974.
  • Bankovic, P., Jovic-Jovicic, A. N., Dostanic, J., Cupic, Z., Loncarevic, D., and Jovanovic, D. (2009). Synthesis, characterization and application of Al, Fe-pillared clays, Acta Phys. Pol. A, 115, 811–815.
  • Bernstein, M. P., Cruikshank, D. P., and Sandford, S. A. (2005). Near-infrared laboratory spectra of solid H2O/CO2 and CH3OH/CO2 ice mixtures, Icarus, 179, 527–534.
  • Castro, C. S., Guerreiro, M. C., Gonçalves, M., Oliveira, L. C., and Anastácio, A. S. (2009). Activated carbon/iron oxide composites for the removal of atrazine from aqueous medium, J. Hazard. Mater., 164, 609–614.
  • Clesceri, L. S., Greenburg, A. E., and Eaton, A. D. (1999). Standard Methods for the Examination of Water and Wastewater, 20th ed., American Public Health Association (APHA), Washington, D.C.
  • Do, Y. J., Kim, J. H., Park, J. H., Park, S. S., Hong, S. S., Suh, C. S., and Lee, G. D. (2005). Photocatalytic decomposition of 4-nitrophenol on Ti-containing MCM-41, Catal. Today, 101, 299–305.
  • Eren, E., and Afsin, B. (2008). An investigation of Cu (II) adsorption by raw and acid-activated bentonite: A combined potentiometric, thermodynamic, XRD, IR, DTA study, J. Hazard Mater., 151, 682–691.
  • Gao, Y., Gan, H., Zhang, G., and Guo, Y. (2013). Visible light assisted Fenton-like degradation of rhodamine B and 4-nitrophenol solutions with a stable poly-hydroxyl-iron/sepiolite catalyst, Chem. Eng. J., 217, 221–230.
  • Garrido-Ramirez, E. G., Sivaiah, M. V., Barrault, J., Valange, S., Theng, B. K., Ureta-Zañartu, M. S., and de la Luz Mora, M. (2012). Catalytic wet peroxide oxidation of phenol over iron or copper oxide-supported allophane clay materials: Influence of catalyst SiO2/Al2O3 ratio, Microporous Mesoporous Mater., 162, 189–198.
  • Gil, A., Korili, S. A., Trujillano, R., and Vicente, M. A. (2011). A review on characterization of pillared clays by specific techniques, Appl. Clay Sci., 53, 97–105.
  • Herney-Ramirez, J., Silva, A. M., Vicente, M. A., Costa, C. A., and Madeira, L. M. (2011). Degradation of Acid Orange 7 using a saponite-based catalyst in wet hydrogen peroxide oxidation: Kinetic study with the Fermi’s equation, Appl. Catal. B Environ., 101, 197–205.
  • Karci, A., Arslan-Alaton, I., Olmez-Hanci, T., and Bekbolet, M. (2012). Transformation of 2, 4-dichlorophenol by H2O2/UV-C, Fenton and photo-Fenton processes: Oxidation products and toxicity evolution, J. Photochem. Photobiol. A Chem., 230, 65–73.
  • Kasiri, M. B., Aleboyeh, H., and Aleboyeh, A. (2008). Degradation of Acid Blue 74 using Fe-ZSM5 zeolite as a heterogeneous photo-Fenton catalyst, Appl. Catal. B Environ., 84, 9–15.
  • Kim, M. H., Jo, S. H., Ha, K. S., Song, J. H., Jang, H. D., and Kwon, Y. I. (2010). Antimicrobial activities of 1,4-benzoquinones and wheat germ extract, J. Microbiol. Biotechnol., 20, 1204–1209.
  • Kwan, W. P., and Voelker, B. M. (2004). Influence of electrostatics on the oxidation rates of organic compounds in heterogeneous Fenton systems, Environ. Sci. Technol., 38, 3425–3431.
  • Luo, M., Bowden, D., and Brimblecombe, P. (2009). Catalytic property of Fe–Al pillared clay for Fenton oxidation of phenol by H2O2, Appl. Catal. B Environ., 85, 201–206.
  • Minz, S., Garg, S., and Gupta, R. (2017). Catalytic wet peroxide oxidation of 4-nitrophenol over Al–Fe, Al–Cu and Al–Cu–Fe pillared clays, Indian Chem. Eng., 1–21.
  • Molina, R., Martínez, F., Melero, J. A., Bremner, D. H., and Chakinala, A. G. (2006). Mineralization of phenol by a heterogeneous ultrasound/Fe-SBA-15/H2O2 process: Multivariate study by factorial design of experiments, Appl. Catal. B Environ., 66, 198–207.
  • Najjar, W., Azabou, S., Sayadi, S., and Ghorbel, A. (2007). Catalytic wet peroxide photo-oxidation of phenolic olive oil mill wastewater contaminants: Part I. Reactivity of tyrosol over (Al–Fe) PILC, Appl. Catal. B Environ., 74, 11–18.
  • Qourzal, S., Barka, N., Belmouden, M., Abaamrane, A., Alahiane, S., Elouardi, M., Assabbane, A., and Ait-Ichou, Y. (2012). Heterogeneous photocatalytic degradation of 4-nitrophenol on suspended titania surface in a dynamic photoreactor, Fresen. Environ. Bull., 21, 1972–1981.
  • Silva, A. M., Herney-Ramirez, J., Soylemez, U., and Madeira, L. M. (2012). A lumped kinetic model based on the Fermi’s equation applied to the catalytic wet hydrogen peroxide oxidation of Acid Orange 7, Appl. Catal. B Environ., 121, 10–19.
  • Singh, D., Mishra, K., and Ramanthan, G. (2015). Bioremediation of Nitroaromatic Compounds, Wastewater Treatment Engineering, In Tech, India.
  • Singh, D. K., and Srivastava, B. (2002). Removal of phenol pollutants from aqueous solutions using various adsorbents, J. Sci. Ind. Res. India, 61, 208–218.
  • Sum, O. S. N., Feng, J., Hub, X., and Yue, P. L. (2005). Photo-assisted Fenton mineralization of an azo-dye acid black 1 using a modified laponite clay-based Fe nanocomposite as a heterogeneous catalyst, Top. Catal., 33, 233–242.
  • Sun, S. P., and Lemley, A. T. (2011). P-Nitrophenol degradation by a heterogeneous Fenton-like reaction on nano-magnetite: Process optimization, kinetics, and degradation pathways, J. Mol. Catal. A Chem., 349, 71–79.
  • Sung, M., and Huang, C. P. (2007). Kinetics of the degradation of 2-chlorophenol by ozonation at pH 3, J. Hazard. Mater., 141, 140–147.
  • Wang, S., Dong, Y., He, M., Chen, L., and Yu, X. (2009). Characterization of GMZ bentonite and its application in the adsorption of Pb (II) from aqueous solutions, Appl. Clay Sci., 43, 164–171.
  • Yin, C., Cai, J., Gao, L., Yin, J., and Zhou, J. (2016). Highly efficient degradation of 4-nitrophenol over the catalyst of Mn2O3/AC by microwave catalytic oxidation degradation method, J. Hazard. Mater., 305, 15–20.
  • Yuan, P., Annabi-Bergaya, F., Tao, Q., Fan, M., Liu, Z., Zhu, J., He, H., and Chen, T. (2008). A combined study by XRD, FTIR, TG and HRTEM on the structure of delaminated Fe-intercalated/pillared clay, J. Colloid Interface Sci., 324, 142–149.
  • Zangeneh, H., Zinatizadeh, A. A., Habibi, M., Akia, M., and Isa, M. H. (2015). Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: A comparative review, J. Ind. Eng. Chem., 26, 1–36.
  • Zhou, S., Zhang, C., Hu, X., Wang, Y., Xu, R., Xia, C., Zhang, H., and Song, Z. (2014). Catalytic wet peroxide oxidation of 4-chlorophenol over Al–Fe-, Al–Cu-, and Al–Fe–Cu-pillared clays: Sensitivity, kinetics and mechanism, Appl. Clay Sci., 95, 275–283.
  • Zhou, T., Li, Y., Ji, J., Wong, F. S., and Lu, X. (2008). Oxidation of 4-chlorophenol in a heterogeneous zero valent iron/H2O2 Fenton-like system: kinetic, pathway and effect factors, Sep. Purif. Technol., 62, 551–558.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.