689
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Enhanced electrocatalytic reduction of aqueous nitrate by modified copper catalyst through electrochemical deposition and annealing treatment

, , , , , , & show all

References

  • Abdallah, R., Geneste, F., Labasque, T., Djelal, H., Fourcade, F., Amrane, A., Taha, S., and Floner, D. (2014). Selective and quantitative nitrate electroreduction to ammonium using a porous copper electrode in an electrochemical flow cell, J. Electroanal. Chem., 727, 148–153.
  • Altaweel, A., Gries, T., Migot, S., Boulet, P., Mézin, A., and Belmonte, T. (2016). Localised growth of CuO nanowires by micro-afterglow oxidation at atmospheric pressure: Investigation of the role of stress, Surf. Coat. Technol., 305, 254–263.
  • Amertharaj, S., Hasnat, M. A., and Mohamed, N. (2014). Electroreduction of nitrate ions at a platinum-copper electrode in an alkaline medium: Influence of sodium inositol phytate, Electrochim. Acta, 136, 557–564.
  • Badea, G. E. (2009). Electrocatalytic reduction of nitrate on copper electrode in alkaline solution, Electrochim. Acta, 54(3), 996–1001.
  • Bockris, J. O. M., and Kim, J. (1996). Electrochemical reductions of Hg (II), ruthenium–nitrosyl complex, chromate, and nitrate in a strong alkaline solution, J. Electrochem. Soc., 143(12), 3801–3808.
  • Butcher, D. P., and Gewirth, A. A. (2016). Nitrate reduction pathways on Cu single crystal surfaces: Effect of oxide and Cl−, Nano Energy, 29, 457–465.
  • Castro-Barros, C. M., Jia, M., van Loosdrecht, M. C., Volcke, E. I., and Winkler, M. K. (2017). Evaluating the potential for dissimilatory nitrate reduction by anammox bacteria for municipal wastewater treatment, Bioresour. Technol., 233, 363–372.
  • Chen, J. T., Zhang, F., Wang, J., Zhang, G. A., Miao, B. B., Fan, X. Y., Yan, D., and Yan, P. X. (2008). CuO nanowires synthesized by thermal oxidation route, J. Alloys Compd., 454(1–2), 268–273.
  • Çirmi, D., Aydın, R., and Köleli, F. (2015). The electrochemical reduction of nitrate ion on polypyrrole coated copper electrode, J. Electroanal. Chem., 736, 101–106.
  • Davis, J., Moorcroft, M. J., Wilkins, S. J., Compton, R. G., and Cardosi, M. F. (2000a). Electrochemical detection of nitrate at a copper modified electrode under the influence of ultrasound, Electroanalysis, 12(17), 1363–1367.
  • Davis, J., Moorcroft, M. J., Wilkins, S. J., Compton, R. G., and Cardosi, M. F. (2000b). Electrochemical detection of nitrate and nitrite at a copper modified electrode, Analyst, 125(4), 737–742.
  • de Groot, M. T., and Koper, M. T. M. (2004). The influence of nitrate concentration and acidity on the electrocatalytic reduction of nitrate on platinum, J. Electroanal. Chem., 562(1), 81–94.
  • Ding, J., Li, W., Zhao, Q.-L., Wang, K., Zheng, Z., and Gao, Y.-Z. (2015). Electroreduction of nitrate in water: Role of cathode and cell configuration, Chem. Eng. J., 271, 252–259.
  • Ding, Y., Sun, W., Yang, W., and Li, Q. (2017). Formic acid as the in-situ hydrogen source for catalytic reduction of nitrate in water by PdAg alloy nanoparticles supported on amine-functionalized SiO2. Appl. Catal. B Environ., 203, 372–380.
  • Dortsiou, M., and Kyriacou, G. (2009). Electrochemical reduction of nitrate on bismuth cathodes, J. Electroanal. Chem., 630(1–2), 69–74.
  • Duca, M., and Koper, M. T. M. (2012). Powering denitrification: the perspectives of electrocatalytic nitrate reduction, Energy Environ. Sci., 5(12), 9726.
  • El-Deab, M. S. (2004). Electrochemical reduction of nitrate to ammonia at modified gold electrodes, Electrochim. Acta, 49(9–10), 1639–1645.
  • Gamboa, J. C., Pena, R. C., Paixao, T. R., and Bertotti, M. (2009). A renewable copper electrode as an amperometric flow detector for nitrate determination in mineral water and soft drink samples, Talanta, 80(2), 581–585.
  • Ghodbane, O., Sarrazin, M., Roué, L., and Bélanger, D. (2008). Electrochemical reduction of nitrate on pyrolytic graphite-supported Cu and Pd–Cu electrocatalysts, J. Electrochem. Soc., 155(6), F117–F123.
  • Govindan, K., Noel, M., and Mohan, R. (2015). Removal of nitrate ion from water by electrochemical approaches, J. Water Process Eng., 6, 58–63.
  • Gui, L., Gillham, R. W., and Odziemkowski, M. S. (2000). Reduction of N-nitrosodimethylamine with granular iron and nickel-enhanced iron. 1. Pathways and kinetics, Environ. Sci. Technol., 34(16), 3489–3494.
  • Hasnat, M. A., Ahamad, N., Nizam Uddin, S. M., and Mohamed, N. (2012). Silver modified platinum surface/H+ conducting Nafion membrane for cathodic reduction of nitrate ions, Appl. Surf. Sci., 258(7), 3309–3314.
  • Hasnat, M. A., Ben Aoun, S., Nizam Uddin, S. M., Alam, M. M., Koay, P. P., Amertharaj, S., Rashed, M. A., Rahman, M. M., and Mohamed, N. (2014). Copper-immobilized platinum electrocatalyst for the effective reduction of nitrate in a low conductive medium: Mechanism, adsorption thermodynamics and stability, Appl. Catal. A Gen., 478, 259–266.
  • Hasnat, M. A., Ben Aoun, S., Rahman, M. M., Asiri, A. M., and Mohamed, N. (2015). Lean Cu-immobilized Pt and Pd films/–H+ conducting membrane assemblies: relative electrocatalytic nitrate reduction activities, J. Ind. Eng. Chem., 28, 131–137.
  • Hirayama, J., and Kamiya, Y. (2017). Highly selective and efficient photocatalytic reduction of nitrate in water by a tandem reaction system consisting of Pt/TiO2 and SnPd/Al2O3: A comparative study of the tandem reaction system with a typical semiconductor photocatalyst, SnPd/TiO2, J. Catal., 348, 306–313.
  • Hou, M., Tang, Y., Xu, J., Pu, Y., Lin, A., Zhang, L., Xiong, J., Yang, X. J., and Wan, P. (2015). Nitrate reduction in water by aluminum–iron alloy particles catalyzed by copper, J. Environ. Chem. Eng., 3(4), 2401–2407.
  • Jiang, X., Herricks, T., and Xia, Y. (2002). CuO nanowires can be synthesized by heating copper substrates in air, Nano Lett., 2(12), 1333–1338.
  • Kalaruban, M., Loganathan, P., Shim, W. G., Kandasamy, J., Naidu, G., Nguyen, T. V., and Vigneswaran, S. (2016). Removing nitrate from water using iron-modified Dowex 21K XLT ion exchange resin: Batch and fluidised-bed adsorption studies, Sep. Purif. Technol., 158, 62–70.
  • Kas, R., Kortlever, R., Milbrat, A., Koper, M. T., Mul, G., and Baltrusaitis, J. (2014). Electrochemical CO2 reduction on Cu2O-derived copper nanoparticles: Controlling the catalytic selectivity of hydrocarbons, Phys. Chem. Chem. Phys., 16(24), 12194–12201.
  • Katsounaros, I., Ipsakis, D., Polatides, C., and Kyriacou, G. (2006). Efficient electrochemical reduction of nitrate to nitrogen on tin cathode at very high cathodic potentials, Electrochim. Acta, 52(3), 1329–1338.
  • Kaur, M., Muthe, K. P., Despande, S. K., Choudhury, S., Singh, J. B., Verma, N., Gupta, S. K., and Yakhmi, J. V. (2006). Growth and branching of CuO nanowires by thermal oxidation of copper, J. Cryst. Growth, 289(2), 670–675.
  • Koay, P. P., Alam, M. S., Alam, M. M., Etesami, M., Hasnat, M. A., and Mohamed, N. (2016). Electrocatalytic reduction of nitrate ions at a poly crystalline SnCu modified platinum surface by using an H+ conducting solid polymer in a sandwich type membrane reactor, J. Environ. Chem. Eng., 4(4), 4494–4502.
  • Kuhl, K. P., Hatsukade, T., Cave, E. R., Abram, D. N., Kibsgaard, J., and Jaramillo, T. F. (2014). Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces, J. Am. Chem. Soc., 136(40), 14107–14113.
  • Li, C. W., Ciston, J., and Kanan, M. W. (2014). Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper, Nature, 508(7497), 504–507.
  • Li, C. W., and Kanan, M. W. (2012). CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films, J. Am. Chem. Soc., 134(17), 7231–7234.
  • Li, M., Feng, C., Zhang, Z., Shen, Z., and Sugiura, N. (2009a). Electrochemical reduction of nitrate using various anodes and a Cu/Zn cathode, Electrochem. Commun., 11(10), 1853–1856.
  • Li, M., Feng, C., Zhang, Z., and Sugiura, N. (2009b). Efficient electrochemical reduction of nitrate to nitrogen using Ti/IrO2–Pt anode and different cathodes, Electrochim. Acta, 54(20), 4600–4606.
  • Li, Y., Wang, Y., Fu, L., Gao, Y., Zhao, H., and Zhou, W. (2017). Aerobic-heterotrophic nitrogen removal through nitrate reduction and ammonium assimilation by marine bacterium Vibrio sp. Y1–5, Bioresour. Technol., 230, 103–111.
  • Liang, J., Zheng, Y., and Liu, Z. (2016). Nanowire-based Cu electrode as electrochemical sensor for detection of nitrate in water, Sens. Actuators B Chem., 232, 336–344.
  • Lin, C. J., Lo, S. L., and Liou, Y. H. (2004). Dechlorination of trichloroethylene in aqueous solution by noble metal-modified iron, J. Hazard. Mater., 116(3), 219–228.
  • Liou, Y. H., Lo, S. L., Lin, C. J., Kuan, W. H., and Weng, S. C. (2005). Chemical reduction of an unbuffered nitrate solution using catalyzed and uncatalyzed nanoscale iron particles, J. Hazard. Mater., 127(1–3), 102–110.
  • Lu, Q., Jeen, S. W., Gui, L., and Gillham, R. W. (2017). Nitrate reduction and its effects on trichloroethylene degradation by granular iron, Water Res., 112, 48–57.
  • Lubphoo, Y., Chyan, J. M., Grisdanurak, N., and Liao, C. H. (2016). Influence of Pd–Cu on nanoscale zero-valent iron supported for selective reduction of nitrate, J. Taiwan Inst. Chem. Eng., 59, 285–294.
  • Ma, M., Djanashvili, K., and Smith, W. A. (2015). Selective electrochemical reduction of CO2 to CO on CuO-derived Cu nanowires, Phys. Chem. Chem. Phys., 17(32), 20861–20867.
  • Ma, B., Yue, M., Zhang, P., Li, S., Cong, R., Gao, W., and Yang, T. (2017). Tetragonal β-In2S3: Partial ordering of In3+ vacancy and visible-light photocatalytic activities in both water and nitrate reduction, Catal. Commun., 88, 18–21.
  • Martínez, J., Ortiz, A., and Ortiz, I. (2017). State-of-the-art and perspectives of the catalytic and electrocatalytic reduction of aqueous nitrates, Appl. Catal. B Environ., 207, 42–59.
  • Mattarozzi, L., Cattarin, S., Comisso, N., Gerbasi, R., Guerriero, P., Musiani, M., and Verlato, E. (2017). Electrodeposition of compact and porous Cu–Pd alloy layers and their application to nitrate reduction in alkali, Electrochim. Acta, 230, 365–372.
  • Mattarozzi, L., Cattarin, S., Comisso, N., Guerriero, P., Musiani, M., Vázquez-Gómez, L., and Verlato, E. (2013). Electrochemical reduction of nitrate and nitrite in alkaline media at CuNi alloy electrodes, Electrochim. Acta, 89, 488–496.
  • Paixao, T. R., Cardoso, J. L., and Bertotti, M. (2007). Determination of nitrate in mineral water and sausage samples by using a renewable in situ copper modified electrode, Talanta, 71(1), 186–191.
  • Reyter, D., Bélanger, D., and Roué, L. (2008). Study of the electroreduction of nitrate on copper in alkaline solution, Electrochim. Acta, 53(20), 5977–5984.
  • Reyter, D., Belanger, D., and Roue, L. (2010). Nitrate removal by a paired electrolysis on copper and Ti/IrO(2) coupled electrodes—Influence of the anode/cathode surface area ratio, Water Res., 44(6), 1918–1926.
  • Reyter, D., Belanger, D., and Roue, L. (2011). Optimization of the cathode material for nitrate removal by a paired electrolysis process, J. Hazard. Mater., 192(2), 507–513.
  • Shen, J., Birdja, Y. Y., and Koper, M. T. (2015). Electrocatalytic nitrate reduction by a cobalt protoporphyrin immobilized on a pyrolytic graphite electrode, Langmuir, 31(30), 8495–8501.
  • Shen, Z., and Wang, J. (2011). Biological denitrification using cross-linked starch/PCL blends as solid carbon source and biofilm carrier, Bioresour. Technol., 102(19), 8835–8838.
  • Su, J. F., Ruzybayev, I., Shah, I., and Huang, C. P. (2016). The electrochemical reduction of nitrate over micro-architectured metal electrodes with stainless steel scaffold, Appl. Catal. B Environ., 180, 199–209.
  • Tepuš, B., Simonič, M., and Petrinić, I. (2009). Comparison between nitrate and pesticide removal from ground water using adsorbents and NF and RO membranes, J. Hazard. Mater., 170(2), 1210–1217.
  • Wang, Q., Zhao, X., Zhang, J., and Zhang, X. (2015). Investigation of nitrate reduction on polycrystalline Pt nanoparticles with controlled crystal plane, J. Electroanal. Chem., 755, 210–214.
  • WHO. (2004). Nitrates and Nitrites in Drinking Water, World Health Organization, Geneva.
  • Wu, W., Yang, F., and Yang, L. (2012). Biological denitrification with a novel biodegradable polymer as carbon source and biofilm carrier, Bioresour. Technol., 118, 136–140.
  • Xu, C. H., Woo, C. H., and Shi, S. Q. (2004). Formation of CuO nanowires on Cu foil. Chem. Phys. Lett., 399(1–3), 62–66.
  • Yoshioka, T., Iwase, K., Nakanishi, S., Hashimoto, K., and Kamiya, K. (2016). Electrocatalytic reduction of nitrate to nitrous oxide by a copper-modified covalent triazine framework, J. Phys. Chem. C, 120(29), 15729–15734.
  • Zhao, Z., and Cai, X. (1988). Determination of trace nitrite by catalytic polarography in ferrous iron thiocyanate medium, J. Electroanal. Chem. Interfacial Electrochem., 252(2), 361–370.
  • Zheng, Y., Liang, J., Chen, Y., and Liu, Z. (2014). Economical and green synthesis of Cu nanowires and their use as a catalyst for selective hydrogenation of cinnamaldehyde, RSC Adv., 4(78), 41683–41689.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.