463
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Binary gas diffusivity estimates from transient, one-dimensional sublimation–diffusion experiments in a spherical enclosure

& ORCID Icon

References

  • Aghazarian, V., Tchiakpe, L., Reynier, J. P., and Gayte-Sorbier, A. (1999). Release of benzimidazole and benzylidene camphor from topical sunscreen formulations, Drug Dev. Ind. Pharm., 25(12), 1277–1282. doi:10.1081/DDC-100102299
  • Aly, A. M., Semreen, M., and Qato, M. K. (2005). Superdisintegrants for solid dispersion to produce rapidly disintegrating tenoxicam tablets via camphor sublimation, Pharm. Technol., 29(1), 68–78. Retrieved from: http://www.pharmtech.com.
  • Ambrose, D., Lawrenson, I. J., and Sprake, C. H. S. (1975). The vapour pressure of naphthalene, J. Chem. Thermodyn., 7(12), 1173–1176. doi:10.1016/0021-9614(75)90038-5
  • Arnold, J. H. (1930). Studies in diffusion: I—Estimation of diffusivities in gaseous systems, Ind. Eng. Chem., 22(10), 1091–1095. doi:10.1021/ie50250a023
  • Ashraf, S. M., Srivastava, R., and Hussain, A. (1986). Determination of binary gas-phase diffusion coefficients using chromatography, J. Chem. Eng. Data, 31(1), 100–102. doi:10.1021/je00043a028
  • Bar-Ilan, M., and Resnick, W. (1957). Gas phase mass transfer in fixed beds at low Reynolds numbers, Ind. Eng. Chem., 49(2), 313–320. doi:10.1021/ie50566a052
  • Bedingfield, Jr., C. H., and Drew, T. B. (1950). Analogy between heat transfer and mass transfer: A psychrometric study, Ind. Eng. Chem., 42(6), 1164–1173. doi:10.1021/ie50486a029
  • Bernier, P. Y. (1988). Low-cost wind speed measurements using naphthalene evaporation, J. Atmospheric Ocean. Technol., 5(5), 662–665. doi:10.1175/1520-0426(1988)005<0662:LCWSMU>2.0.CO;2
  • Bird, R. B., Stewart, W. E., and Lightfoot, E. N. (2007). Transport Phenomena, revised 2nd ed., John Wiley & Sons, Inc., New York City, NY.
  • Box, G. E. P., Hunter, W. G., and Hunter, J. S. (1978). Statistics for Experimenters: An Introduction to Design, Data Analysis, and Model Building, John Wiley & Sons, Inc., New York City, NY.
  • Burdukov, A. P., and Nakoryakov, V. E. (1965). On mass transfer in an acoustic field, J. Appl. Mech. Tech. Phys., 6(2), 51–55. doi:10.1007/BF00915612
  • Caldwell, L. (1984). Diffusion coefficient of naphthalene in air and hydrogen, J. Chem. Eng. Data, 29(1), 60–62. doi:10.1021/je00035a020
  • Chang, S. K. W., and González, R. R. (1989). Analysis of articulated manikin-based convective heat transfer during walking, Technical Report T11–89, AD-A208299, United States Army Research Institute of Environmental Medicine, Natick, MA.
  • Chen, P.-H., Miao, J.-M., and Jian, C.-S. (1996). Novel technique for investigating the temperature effect on the diffusion coefficient of naphthalene into air, Rev. Sci. Instrum., 67(8), 2831–2836. doi:10.1063/1.1147113
  • Chen, P.-H., and Wung, P.-H. (1990). Diffusion coefficient of naphthalene in air, J. Chinese Inst. Chem. Eng., 21(3), 161–166.
  • Chen, W., Vermaak, I., and Viljoen, A. (2013). Camphor—A fumigant during the Black Death and a coveted fragrant wood in ancient Egypt and Babylon—A review, Molecules, 18(5), 5434–5454. doi:10.3390/molecules18055434
  • Chen, Y.-M., Lee, W.-T., and Wu, S.-J. (1998). Heat (mass) transfer between an impinging jet and a rotating disk, Heat Mass Transfer, 34(2), 195–201. doi:10.1007/s002310050249
  • Chilton, T. H., and Colburn, A. P. (1934). Mass transfer (absorption) coefficients: Prediction from data on heat transfer and fluid friction, Ind. Eng. Chem., 26(11), 1183–1187. doi:10.1021/ie50299a012
  • Cho, K., Irvine, Jr., T. F., and Karni, J. (1992). Measurement of the diffusion coefficient of naphthalene into air, Int. J. Heat Mass Transfer, 35(4), 957–966. doi:10.1016/0017-9310(92)90260-Y
  • Chotaliya, M. K. B., and Chakraborty, S. (2012). Overview of oral dispersible tablets, Int. J. PharmTech Res., 4(4), 1712–1720. Retrieved from: http://www.sphinxsai.com/pharmtech.php; ISSN: 0974–4304.
  • Christian, W. J., and Kezios, S. P. (1959). Sublimation from sharp-edged cylinders in axisymmetric flow, including influence of surface curvature, AIChE J., 5(1), 61–68. doi:10.1002/aic.690050114
  • Comings, E. W., Clapp, J. T., and Taylor, J. F. (1948). Air turbulence and transfer processes: Flow normal to cylinders, Ind. Eng. Chem., 40(6), 1076–1082. doi:10.1021/ie50462a019
  • Constan, G. L., and Calvert, S. (1963). Mass transfer in drops under conditions that promote oscillation and internal circulation, AIChE J., 9(1), 109–115. doi:10.1002/aic.690090125
  • Curteanu, S., Smarandoiu, M., Horoba, D., and Leon, F. (2014). Naphthalene sublimation: Experiment and optimization based on neuro-evolutionary methodology, J. Ind. Eng. Chem., 20(4), 1608–1611. doi:10.1016/j.jiec.2013.08.007
  • Cussler, E. L. (2009). Diffusion: Mass Transfer in Fluid Systems, 3rd ed., Cambridge University Press, Cambridge, England.
  • Dean, J. A. (Ed.) (1992). Lange’s Handbook of Chemistry, 14th ed., McGraw-Hill, Inc., New York City, NY.
  • Delgado, J. M. P. Q. (2007). Molecular diffusion coefficients of organic compounds in water at different temperatures, J. Phase Equilib. Diff., 28(5), 427–432. doi:10.1007/s11669-007-9160-4
  • Delgado, J. M. P. Q., Alves, M. A., and Guedes de Carvalho, J. R. F. (2005). A simple and inexpensive technique to measure molecular diffusion coefficients, J. Phase Equilib. Diff., 26(5), 447–451. doi:10.1361/154770305x66501
  • Eckert, E. R. G. (1976). Analogies to heat transfer processes, in: Eckert, E. R. G., Goldstein, R. J. (Eds.), Measurements in Heat Transfer, 2nd ed., Hemisphere Publishing Corporation, Washington, DC, pp. 397–423.
  • Fite, L. W., and Janna, W. S. (1991). Mass transfer from a sublimating naphthalene cylinder to a crossflow of air, Appl. Energy, 38(1), 21–32. doi:10.1016/0306-2619(91)90039-Z
  • Frössling, N. (1938). Über die Verdunstung fallender Tropfen, Gerlands Beiträge zur Geophysik, 52, 170–216.
  • Fu, W.-S., Tseng, C.-C., and Huang, C.-S. (1995). Experimental study of the heat transfer enhancement of an outer tube with an inner-tube insertion, Int. J. Heat Mass Transfer, 38(18), 3443–3454. doi:10.1016/0017-9310(95)00053-C
  • Fuller, E. N., Schettler, P. D., and Giddings, J. C. (1966). A new method for prediction of binary gas-phase diffusion coefficients, Ind. Eng. Chem., 58(5), 18–27. doi:10.1021/ie50677a007
  • Garner, F. H., and Grafton, R. W. (1954). Mass transfer in fluid flow from a solid sphere, Proc. R. Soc. London Ser. A Math. Phys. Sci., 224(1156), 64–82. doi:10.1098/rspa.1954.0141
  • Garner, F. H., and Hoffman, J. M. (1960). The transition from free to forced convection in mass transfer from solid spheres, AIChE J., 6(4), 579–584. doi:10.1002/aic.690060415
  • Garner, F. H., and Hoffman, J. M. (1961). Mass transfer from single solid spheres by free convection, AIChE J., 7(1), 148–152. doi:10.1002/aic.690070132
  • Garner, F. H., and Keey, R. B. (1958). Mass-transfer from single solid spheres—I: Transfer at low Reynolds numbers, Chem. Eng. Sci., 9(2–3), 119–129. doi:10.1016/0009-2509(58)80003-2
  • Garner, F. H., and Keey, R. B. (1959). Mass-transfer from single solid spheres—II: Transfer in free convection, Chem. Eng. Sci., 9(4), 218–224. doi:10.1016/0009-2509(59)85004-1
  • Garner, F. H., and Suckling, R. D. (1958). Mass transfer from a soluble solid sphere, AIChE J., 4(1), 114–124. doi:10.1002/aic.690040120
  • Giddings, J. C., and Seager, S. L. (1960). Rapid determination of gaseous diffusion coefficients by means of gas chromatography apparatus, J. Chem. Phys., 33(5), 1579–1580. doi:10.1063/1.1731448
  • Giddings, J. C., and Seager, S. L. (1962). Method for rapid determination of diffusion coefficients, Ind. Eng. Chem. Fundam., 1(4), 277–283. doi:10.1021/i160004a009
  • Gilliland, E. R. (1934). Diffusion coefficients in gaseous systems, Ind. Eng. Chem., 26(6), 681–685. doi:10.1021/ie50294a020
  • Goldstein, R. J., and Cho, H. H. (1995). A review of mass transfer measurements using naphthalene sublimation, Exp. Therm. Fluid Sci., 10(4), 416–434. doi:10.1016/0894-1777(94)00071-F
  • Goldstein, R. J., Sparrow, E. M., and Jones, D. C. (1973). Natural convection mass transfer adjacent to horizontal plates, Int. J. Heat Mass Transfer, 16(5), 1025–1035. doi:10.1016/0017-9310(73)90041-0
  • Green, D. W., and Perry, R. H. (Eds.) (2008). Perry’s Chemical Engineers’ Handbook, 8th ed., The McGraw-Hill Companies, Inc., New York City, NY.
  • Gupta, A. K., Kumar, A., Mishra, D. N., and Singh, S. K. (2011). Formulation of rapid mouth dissolving tablets of cetirizine diHCl using sublimation method, Int. J. Pharm. Pharm. Sci., 3(3), 285–287. Retrieved from: http://www.ijppsjournal.com/index.htm; ISSN: 0975–1491.
  • Gustafson, K. E., and Dickhut, R. M. (1994). Molecular diffusivity of polycyclic aromatic hydrocarbons in air, J. Chem. Eng. Data, 39(2), 286–289. doi:10.1021/je00014a020
  • Hamidpour, R., Hamidpour, S., Hamidpour, M., and Shahlari, M. (2013). Camphor (Cinnamomum camphora), a traditional remedy with the history of treating several diseases, Int. J. Case Rep. Imag., 4(2), 86–89. doi:10.5348/ijcri-2013-02-267-RA-1
  • Harvard University. (2017). Early history of the Department of Physics and the Jefferson Physical Laboratory, Cambridge, MA. Retrieved from: https://www.physics.harvard.edu/about/history.
  • Hildebrand, F. B. (1976). Advanced Calculus for Applications, 2nd ed., Prentice-Hall, Inc., Englewood Cliffs, NJ.
  • Himmelblau, D. M., and Riggs, J. B. (2004). Basic Principles and Calculations in Chemical Engineering, 7th ed., Prentice Hall Professional Technical Reference, Upper Saddle River, NJ.
  • Holman, J. P. (2010). Heat Transfer, 10th ed., The McGraw-Hill Companies, Inc., New York City, NY.
  • Hong, K., and Song, T.-H. (2007). Development of optical naphthalene sublimation method, Int. J. Heat Mass Transfer, 50(19–20), 3890–3898. doi:10.1016/j.ijheatmasstransfer.2007.02.017
  • Hsiung, T. H., and Thodos, G. (1977). Mass transfer in gas-fluidized beds: Measurement of actual driving forces, Chem. Eng. Sci., 32(6), 581–592. doi:10.1016/0009-2509(77)80223-6
  • Jeffrey, A. (2002). Advanced Engineering Mathematics, Harcourt/Academic Press, Burlington, MA.
  • Karaiskakis, G., and Gavril, D. (2004). Determination of diffusion coefficients by gas chromatography, J. Chromatogr. A, 1037(1–2), 147–189. doi:10.1016/j.chroma.2004.01.015
  • Koçak, K., and Çaldağ, B. (2009). An attempt to measure evaporation from a Class-A pan using naphthalene sublimation, Turkish J. Eng. Environ. Sci., 33(3), 185–192. doi:10.3906/muh-0905-19
  • Koizumi, K., Watanabe, Y., Morita, K., Utoguchi, N., and Matsumoto, M. (1997). New method of preparing high-porosity rapidly saliva soluble compressed tablets using mannitol with camphor, a subliming material, Int. J. Pharm., 152(1), 127–131. doi:10.1016/S0378-5173(97)04924-7
  • Kreith, F., Taylor, J. H., and Chong, J. P. (1959). Heat and mass transfer from a rotating disk, Trans ASME J. Heat Transfer, 81, 95–105.
  • Kumar, M., and Ando, Y. (2003a). Camphor—A botanical precursor producing garden of carbon nanotubes, Diam. Relat. Mater., 12(3–7), 998–1002. doi:10.1016/S0925-9635(02)00341-2
  • Kumar, M., and Ando, Y. (2003b). Single-wall and multi-wall carbon nanotubes from camphor—A botanical hydrocarbon, Diamond and Related Materials, 12(10–11), 1845–1850. doi:10.1016/S0925-9635(03)00217-6
  • Kumar, M., and Ando, Y. (2007). Carbon nanotubes from camphor: An environment-friendly nanotechnology, J. Phys. Conf. Ser., 61, 643–646. doi:10.1088/1742-6596/61/1/129
  • Kumar, R., Patil, S., Patil, M. B., Patil, S. R., and Paschapur, M. S. (2009). Formulation evaluation of mouth dissolving tablets of fenofibrate using sublimation technique, Int. J. ChemTech Res., 1(4), 840–850. Retrieved from: http://www.sphinxsai.com/chemtech.php; ISSN: 0974–4290.
  • Lakshmi, C. S. R., Patel, N. J., Patel, H. P., and Akul, S. (2011). Formulation and evaluation of oral dispersible tablets of cinnarizine using sublimation technique, Int. J. Pharm. Sci. Rev. Res., 6(2), 178–182. Retrieved from: http://globalresearchonline.net; ISSN: 0976–044X.
  • Langmuir, I. (1918). The evaporation of small spheres, Phys. Rev. (Ser. II), 12(5), 368–370. doi:10.1103/PhysRev.12.368.
  • Lee, J. A., and Greeley, R. (1987). Determination of surface shear stress with the naphthalene sublimation technique, NASA Technical Report 19870014027, Washington, DC. Retrieved from: https://ntrs.nasa.gov/search.jsp?R = 19870014027.
  • Lee, K., and Barrow, H. (1965). Some observations on transport processes in the wake of a sphere in low speed flow, Int. J. Heat Mass Transfer, 8(3), 403–409. doi:10.1016/0017-9310(65)90003-7
  • Lee, K., and Barrow, H. (1968). Transport processes in flow around a sphere with particular reference to the transfer of mass, Int. J. Heat Mass Transfer, 11(6), 1013–1026. doi:10.1016/0017-9310(68)90007-0
  • Lide, D. R. (Ed.) (2004). CRC Handbook of Chemistry and Physics, 85th ed., CRC Press, Boca Ratón, FL.
  • Linton, M., and Sutherland, K. L. (1960). Transfer from a sphere into a fluid in laminar flow, Chem. Eng. Sci., 12(3), 214–229. doi:10.1016/0009-2509(60)85007-5
  • Lugg, G. A. (1968). Diffusion coefficients of some organic and other vapors in air, Anal. Chem., 40(7), 1072–1077. doi:10.1021/ac60263a006
  • Mack, Jr., E. (1925). Average cross-sectional areas of molecules by gaseous diffusion methods, J. Am. Chem. Soc., 47(10), 2468–2482. doi:10.1021/ja01687a007
  • Macleod, N., Cox, M. D., and Todd, R. B. (1962). A profilometric technique for determining local mass-transfer rates: Application to the estimation of local heat-transfer coefficients in a nuclear reactor, Chem. Eng. Sci., 17(11), 923–935. doi:10.1016/0009-2509(62)87024-9
  • Marrero, T. R., and Mason, E. A. (1973). Correlation and prediction of gaseous diffusion coefficients, AIChE J., 19(3), 498–503. doi:10.1002/aic.690190312
  • Mathers, W. G., Madden, Jr., A. J., and Piret, E. L. (1957). Simultaneous heat and mass transfer in free convection: Numerical solutions for a vertical plate, Ind. Eng. Chem., 49(6), 961–968. doi:10.1021/ie50570a025
  • Mickley, H. S., Sherwood, T. K., and Reed, C. E. (1957). Applied Mathematics in Chemical Engineering, 2nd ed., McGraw-Hill Book Company, Inc., New York City, NY.
  • Morse, H. W. (1910). On evaporation from the surface of a solid sphere: Preliminary note, Proc. Am. Acad. Arts Sci., 45(14), 363–367. doi:10.2307/20022561
  • Nassif, N. J., Janna, W. S., and Jakubowski, G. S. (1995). Mass transfer from a sublimating naphthalene flat plate to a parallel flow of air, Int. J. Heat Mass Transfer, 38(4), 691–700. doi:10.1016/0017-9310(94)00191-W
  • Neal, S. B. H. C. (1975). The development of the thin-film naphthalene mass-transfer analogue technique for the direct measurement of heat-transfer coefficients, Int. J. Heat Mass Transfer, 18(4), 559–567. doi:10.1016/0017-9310(75)90297-5
  • Neal, S. B. H. C., Northover, E. W., and Hitchcock, J. A. (1970). The development of a technique for applying naphthalene to surfaces for mass transfer analogue investigations, J. Phys. E Sci. Instrum., 3(8), 636–638. doi:10.1088/0022-3735/3/8/312
  • Ney, E. P., and Armistead, F. C. (1947). The self-diffusion coefficient of uranium hexafluoride, Phys. Rev., 71(1), 14–19. doi:10.1103/physrev.71.14
  • Nishi, Y., and Gagge, A. P. (1970). Direct evaluation of convective heat transfer coefficient by naphthalene sublimation, J. Appl. Physiol., 29(6), 830–838. http://jap.physiology.org/content/29/6/830.
  • Owen, F. K. (1967). Heat transfer from plain and finned cylinders in crossflow, J. Inst. Heat. Vent. Engrs., 35, 213–226. https://www.bsria.co.uk.
  • Pandey, K., Jain, A., Meena, A. K., Singh, P., and Singh, R. K. (2013). Camphor based carbon nanotubes: A recent advancement in green chemistry, Bull. Environ. Pharmacol. Life Sci., 3(1), 3–6. http://www.bepls.com.
  • Park, J.-H., and Yoo, S.-Y. (2004). A naphthalene sublimation study on heat/mass transfer for flow over a flat plate, Korean Soc. Mech. Eng. Int. J., 18(7), 1258–1266. doi:10.1007/BF02983300
  • Pérez, J. A., and Sparrow, E. M. (1985). Determination of shell-side heat transfer coefficients by the naphthalene sublimation technique, Heat Transfer Eng., 6(2), 19–30. doi:10.1080/01457638508939621
  • Poling, B. E., Prausnitz, J. M., and O’Connell, J. P. (2001). The Properties of Gases and Liquids, 5th ed., The McGraw-Hill Companies, Inc., New York City, NY.
  • Prins, W., Casteleijn, T. P., Draijer, W., and van Swaaij, W. P. M. (1985). Mass transfer from a freely moving single sphere to the dense phase of a gas fluidized bed of inert particles, Chem. Eng. Sci., 40(3), 481–497. doi:10.1016/0009-2509(85)85109-5
  • Ranz, W. E., and Marshall, Jr., W. R. (1952a). Evaporation from drops: Part I, Chem. Eng. Prog., 48(3), 141–146.
  • Ranz, W. E., and Marshall, Jr., W. R. (1952b). Evaporation from drops: Part II, Chem. Eng. Prog., 48(4), 173–180.
  • Sherwood, T. K., and Träss, O. (1960). Sublimation mass transfer through compressible boundary layers on a flat plate, Trans. ASME J. Heat Transfer, 82(4), 313–324. doi:10.1115/1.3679941
  • Siddiqi, M. A., and Atakan, B. (2007). Combined experiments to measure low sublimation pressures and diffusion coefficients of organometallic compounds, Thermochim. Acta, 452(2), 128–134. doi:10.1016/j.tca.2006.10.021
  • Silva-Filho, S. E., Silva-Comar, F. M. S., Wiirzler, L. A. M., do Pinho, R. J., Grespan, R., Bersani-Amado, C. A., and Cuman, R. K. N. (2014). Effect of camphor on the behavior of leukocytes in vitro and in vivo in acute inflammatory response, Trop. J. Pharm. Res., 13(12), 2031–2037. doi:10.4314/tjpr.v13i12.13
  • Skelland, A. H. P., and Cornish, A. R. H. (1963). Mass transfer from spheroids to an air stream, AIChE J., 9(1), 73–76. doi:10.1002/aic.690090116
  • Sogin, H. H. (1958). Sublimation from disks to air streams flowing normal to their surfaces, Trans. Am. Soc. Mech. Eng., 80, 61–69.
  • Souza Mendes, P. R. (1991). The naphthalene sublimation technique, Exp. Therm. Fluid Sci., 4(5), 510–523. doi:10.1016/0894-1777(91)90031-L
  • Sparrow, E. M., and Prieto, R. F. (1983). Heat transfer coefficients and patterns of fluid flow for contacting spheres at various angles of attack, Trans. ASME J. Heat Transfer, 105(1), 48–55. doi:10.1115/1.3245558
  • Stapountzis, H., Andreatos, G., and Kordatos, I. (2016). Effects of turbulence on mass transfer of cylindrical disks, Paper No. ENFHT 113, Proceedings of the World Congress on Momentum, Heat and Mass Transfer, Prague, Czech Republic, April 4–5, 2016. doi:10.11159/enfht16.113
  • Steinberger, R. L., and Treybal, R. E. (1960). Mass transfer from a solid soluble sphere to a flowing liquid stream, AIChE J., 6(2), 227–232. doi:10.1002/aic.690060213
  • Topley, B., and Whytlaw-Gray, R. (1927). Experiments on the rate of evaporation of small spheres as a method of determining diffusion coefficients—The diffusion coefficient of iodine, Lond. Edinb. Dubl. Phil. Mag. J. Sci. (Seventh Ser.), 4(24), 873–888. doi:10.1080/14786441108564392
  • van der Westhuizen, F. E. (2008). Vapour phase mass transfer coefficients in structured packing, Master of Science in Engineering Thesis, Department of Process Engineering, Stellenbosch University, Stellenbosch, Republic of South Africa.
  • Wang, P., Kong, C. H., and Zhang, C. X. (2006). Chemical composition and antimicrobial activity of the essential oil from Ambrosia trifida L., Molecules, 11(7), 549–555. doi:10.3390/11070549
  • Wasik, S. P., and McCulloh, K. E. (1969). Measurements of gaseous diffusion coefficients by a gas chromatographic technique, J. Res. Natl. Bur. Stand. A Phys. Chem., 73A(2), 207–211. doi:10.6028/jres.073A.018
  • Wilke, C. R., and Lee, C. Y. (1955). Estimation of diffusion coefficients for gases and vapors, Ind. Eng. Chem., 47(6), 1253–1257. doi:10.1021/ie50546a056.
  • Winding, C. C., and Cheney, Jr., A. J. (1948). Mass and heat transfer in tube banks, Ind. Eng. Chem., 40(6), 1087–1093. doi:10.1021/ie50462a021
  • Zuccarini, P., and Soldani, G. (2009). Camphor: Benefits and risks of a widely used natural product, Acta Biol. Szeged., 53(2), 77–82. http://www.sci.u-szeged.hu/…/5377.pdf.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.