258
Views
19
CrossRef citations to date
0
Altmetric
Articles

Medium-chain-length poly-3-hydroxyalkanoates-carbon nanotubes composite as proton exchange membrane in microbial fuel cell

, , &
Pages 731-745 | Received 23 Apr 2018, Accepted 28 Aug 2018, Published online: 30 Oct 2018

References

  • Alam, J., Dass, L. A., Alhoshan, M. S., Ghasemi, M., and Mohammad, A. W. (2012). Development of polyaniline-modified polysulfone nanocomposite membrane, Appl. Water Sci., 2, 37–46.
  • Anis, S. N. S., Mohamad Annuar, M. S., and Simarani, K. (2017). In vivo and in vitro depolymerizations of intracellular medium-chain-length poly-3-hydroxyalkanoates produced by Pseudomonas putida Bet001, Prep. Biochem. Biotechnol., 47, 824–834.
  • Ansari, N. F., and M. Annuar, M. S. (2018). Functionalization of medium-chain-length poly (3-hydroxyalkanoates) as amphiphilic material by graft copolymerization with glycerol 1, 3-diglycerolate diacrylate and its mechanism, J. Macromol. Sci., Part A, 55, 66–74.
  • APHA, AWWA, WEF. (2012). Standard Methods for Examination of Water and Waste Water, 22nd ed., American Public Health Association, Washington DC.
  • Ayyaru, S., and Dharmalingam, S. (2011). Development of MFC using sulphonated polyether ether ketone (SPEEK) membrane for electricity generation from waste water, Bioresour. Technol., 102, 11167–11171.
  • Erable, B., Etcheverry, L., and Bergel, A. (2009). Increased power from a two-chamber microbial fuel cell with a low-pH air-cathode compartment, Electrochem. Commun., 11, 619–622.
  • Ghasemi, M., Daud, W. R. W., Ismail, M., Rahimnejad, M., Ismail, A. F., Leong, J. X., Miskan, M., and Liew, K. B. (2013). Effect of pre-treatment and biofouling of proton exchange membrane on microbial fuel cell performance, Int. J. Hydrog. Energy, 38, 5480–5484.
  • Ghasemi, M., Shahgaldi, S., Ismail, M., Yaakob, Z., and Daud, W. R. W. (2012). New generation of carbon nanocomposite proton exchange membranes in microbial fuel cell systems, Chem. Eng. J., 184, 82–89.
  • Girguis, P. R., Nielsen, M. E., and Reimers, C. E. (2010). Fundamentals of benthic microbial fuel cells: Theory, development and application. In Bioelectrochemical Systems: From Extracellular Electron Transfer to Biotechnol, Application: IWA Publishing, eds. Rabaey, K., Angenent, L., Schroder, U., and Keller, J. 327–346, Springer Verlag Press, London.
  • Gumel, A., Annuar, M. S. M., and Heidelberg, T. (2012a). Effects of carbon substrates on biodegradable polymer composition and stability produced by Delftia tsuruhatensis Bet002 isolated from palm oil mill effluent, Polym. Degrad. Stab., 97, 1224–1231.
  • Gumel, A. M., Annuar, M. S. M., and Heidelberg, T. (2012b). Biosynthesis and characterization of polyhydroxyalkanoates copolymers produced by Pseudomonas putida Bet001 isolated from palm oil mill effluent, PLoS One, 7, e45214.
  • Gumel, A., Annuar, M., Ishak, K., and Ahmad, N. (2014). Carbon nanofibers-poly-3-hydroxyalkanoates nanocomposite: Ultrasound-assisted dispersion and thermostructural properties, J. Nanomater., 2014, 1.
  • Hindatu, Y., Annuar, M., and Gumel, A. (2017a). Mini-review: Anode modification for improved performance of microbial fuel cell, Renew. Sust. Energ. Rev., 73, 236–248.
  • Hindatu, Y., Annuar, M., Subramaniam, R., and Gumel, A. (2017b). Medium-chain-length poly-3-hydroxyalkanoates-carbon nanotubes composite anode enhances the performance of microbial fuel cell, Bioprocess Biosyst. Eng., 40, 919–928.
  • Khilari, S., Pandit, S., Varanasi, J. L., Das, D., and Pradhan, D. (2015). Bifunctional manganese ferrite/polyaniline hybrid as electrode material for enhanced energy recovery in microbial fuel cell, ACS Appl. Mater. Interfaces Int., 7, 20657–20666.
  • Kim, J. R., Cheng, S., Oh, S.-E., and Logan, B. E. (2007). Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells, Environ. Sci. Technol., 41, 1004–1009.
  • Kim, J. R., Zuo, Y., Regan, J. M., and Logan, B. E. (2008). Analysis of ammonia loss mechanisms in microbial fuel cells treating animal wastewater, Biotechnol. Bioeng., 99, 1120–1127.
  • Kourmentza, C., Plácido, J., Venetsaneas, N., Burniol-Figols, A., Varrone, C., Gavala, H. N., and Reis, M. A. (2017). Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production, Bioengineering, 4, 55.
  • Leong, J. X., Daud, W. R. W., Ghasemi, M., Liew, K. B., and Ismail, M. (2013). Ion exchange membranes as separators in microbial fuel cells for bioenergy conversion: A comprehensive review, Renew. Sust. Energ. Rev., 28, 575–587.
  • Leong, J. X., Daud, W. R. W., Ghasemi, M., Ahmad, A., Ismail, M., and Liew, K. B. (2015). Composite membrane containing graphene oxide in sulfonated polyether ether ketone in microbial fuel cell applications, Int. J. Hydrog. Energy, 40, 11604–11614.
  • Li, W.-W., Sheng, G.-P., Liu, X.-W., and Yu, H.-Q. (2011). Recent advances in the separators for microbial fuel cells, Bioresour. Technol., 102, 244–252.
  • Li, W.-W., Yu, H.-Q., and He, Z. (2013). Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies, Energy Environ. Sci., 7, 911–924.
  • Logan, B. E. (2008). Microbial Fuel Cells, John Wiley & Sons, New York.
  • Ma, C.-H., Yu, T. L., Lin, H.-L., Huang, Y.-T., Chen, Y.-L., Jeng, U.-S., Lai, Y.-H., and Sun, Y.-S. (2009). Morphology and properties of nafion membranes prepared by solution casting, Polymer, 50, 1764–1777.
  • Mahendiravarman, E., and Sangeetha, D. (2013). Increased microbial fuel cell performance using quaternized poly ether ether ketone anionic membrane electrolyte for electricity generation, Int. J. Hydrog. Energy, 38, 2471–2479.
  • Muhammadi, S., Afzal, M., and Hameed, S. (2015). Bacterial polyhydroxyalkanoates-eco-friendly next generation plastic: Production, biocompatibility, biodegradation, physical properties and applications, Green Chem. Lett. Rev., 8, 56–77.
  • Nor, M. H. M., Mubarak, M. F. M., Elmi, H. S. A., Ibrahim, N., Wahab, M. F. A., and Ibrahim, Z. (2015). Bioelectricity generation in microbial fuel cell using natural microflora and isolated pure culture bacteria from anaerobic palm oil mill effluent sludge, Bioresour. Technol., 190, 458–465.
  • Rangel-Cárdenas, A. L., and Koper, G. J. (2017). Transport in proton exchange membranes for fuel cell applications—a systematic non-equilibrium approach, Materials, 10, 576.
  • Ren, L., Ahn, Y., and Logan, B. E. (2014). A two-stage microbial fuel cell and anaerobic fluidized bed membrane bioreactor (MFC-AFMBR) system for effective domestic wastewater treatment, Environ. Sci. Technol., 48, 4199–4206.
  • Rudra, R., Kumar, V., Pramanik, N., and Kundu, P. P. (2017). Graphite oxide incorporated crosslinked polyvinyl alcohol and sulfonated styrene nanocomposite membrane as separating barrier in single chambered microbial fuel cell, J. Power Sources, 341, 285–293.
  • Sánchez, R. J., Schripsema, J., da Silva, L. F., Taciro, M. K., Pradella, J. G., and Gomez, J. G. C. (2003). Medium-chain-length polyhydroxyalkanoic acids (PHA mcl) produced by Pseudomonas putida IPT 046 from renewable sources, Eur. Polym. J., 39, 1385–1394.
  • Sevda, S., Dominguez-Benetton, X., Vanbroekhoven, K., Sreekrishnan, T., and Pant, D. (2013). Characterization and comparison of the performance of two different separator types in air–cathode microbial fuel cell treating synthetic wastewater, Chem. Eng. J., 228, 1–11.
  • Shahgaldi, S., Ghasemi, M., Daud, W. R. W., Yaakob, Z., Sedighi, M., Alam, J., and Ismail, A. F. (2014). Performance enhancement of microbial fuel cell by PVDF/nafion nanofibre composite proton exchange membrane, Fuel Process. Technol., 124, 290–295.
  • Singh, R., Ibrahim, M. H., Esa, N., and Iliyana, M. (2010). Composting of waste from palm oil mill: A sustainable waste management practice, Rev. Environ. Sci. Biotechnol., 9, 331–344.
  • Winfield, J., Chambers, L. D., Rossiter, J., and Ieropoulos, I. (2013a). Comparing the short and long term stability of biodegradable, ceramic and cation exchange membranes in microbial fuel cells, Bioresour. Technol., 148, 480–486.
  • Winfield, J., Ieropoulos, I., Greenman, J., and Dennis, J. (2011). The overshoot phenomenon as a function of internal resistance in microbial fuel cells, Bioelectrochemistry, 81, 22–27.
  • Winfield, J., Ieropoulos, I., Rossiter, J., Greenman, J., and Patton, D. (2013b). Biodegradation and proton exchange using natural rubber in microbial fuel cells, Biodegradation, 24, 733–739.
  • Xu, H., Wang, X., Shao, Z., and Hsing, I. (2002). Recycling and regeneration of used perfluorosulfonic membranes for polymer electrolyte fuel cells, J. Appl. Electrochem., 32, 1337–1340.
  • Xu, J., Sheng, G.-P., Luo, H.-W., Li, W.-W., Wang, L.-F., and Yu, H.-Q. (2012). Fouling of proton exchange membrane (PEM) deteriorates the performance of microbial fuel cell, Water Res., 46, 1817–1824.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.