296
Views
12
CrossRef citations to date
0
Altmetric
Articles

Effect of LHW, HCl, and NaOH pretreatment on enzymatic hydrolysis of sugarcane bagasse: sugar recovery and fractal-like kinetics

, , , , &
Pages 772-780 | Received 28 May 2018, Accepted 13 Sep 2018, Published online: 05 Nov 2018

References

  • Alvira, P., Tomás-Pejó, E., Ballesteros, M., and Negro, M. J. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review, Bioresour. Technol., 101, 4851–4861.
  • Bansal, P., Hall, M., Realff, M. J., Lee, J. H., and Bommarius, A. S. (2009). Modeling cellulase kinetics on lignocellulosic substrates, Biotechnol. Adv., 27, 833–848.
  • Bommarius, A. S., Katona, A., Cheben, S. E., Patel, A. S., Ragauskas, A. J., Knudson, K., and Pu, Y. (2008). Cellulase kinetics as a function of cellulose pretreatment, Metab. Eng., 10, 370–381.
  • Carrillo, F., Lis, M. J., Colom, X., Lopez-Mesas, M., and Valldeperas, J. (2005). Effect of alkali pretreatment on cellulase hydrolysis of wheat straw: kinetic study, Process Biochem., 40, 3360–3364.
  • Cha, Y. L., Yang, J., Seo, S. I., An, G. H., Moon, Y. H., You, G. D., Lee, J. E., Ahn, J. W., and Lee, K. B. (2016). Alkaline twin-screw extrusion pretreatment of miscanthus with recycled black liquor at the pilot scale, Fuel, 164, 322–328.
  • Chen, Y. T., and Wang, F. S. (2011). Determination of kinetic parameters for enzymatic cellulose hydrolysis using hybrid differential evolution, Int. J. Chem. React. Eng., 9.
  • Dhabhai, R., Chaurasia, S. P., and Dalai, A. K. (2013). Effect of pretreatment conditions on structural characteristics of wheat straw, Chem. Eng. Commun., 200, 1251–1259.
  • Djajadi, D. T., Jensen, M. M., Oliveira, M., Jensen, A., Thygesen, L. G., Pinelo, M., Glasius, M., Jorgensen, H., and Meyer, A. S. (2018). Lignin from hydrothermally pretreated grass biomass retards enzymatic cellulose degradation by acting as a physical barrier rather than by inducing nonproductive adsorption of enzymes, Biotechnol. Biofuels, 11.
  • He, J., Huang, C. X., Lai, C. H., Huang, C., Li, X., and Yong, Q. (2018). Elucidation of structure-inhibition relationship of monosaccharides derived pseudo-lignin in enzymatic hydrolysis, Ind. Crop Prod., 113, 368–375.
  • Imman, S., Arnthong, J., Burapatana, V., Champreda, V., and Laosiripojana, N. (2014). Effects of acid and alkali promoters on compressed liquid hot water pretreatment of rice straw, Bioresour. Technol., 171, 29–36.
  • Jiang, F., Qian, C., Esker, A. R., and Roman, M. (2017). Effect of nonionic surfactants on dispersion and polar interactions in the adsorption of cellulases onto lignin, J. Phys. Chem. B, 121, 9607–9620.
  • Karp, E. M., Donohoe, B. S., O’Brien, M. H., Ciesielski, P. N., Mittal, A., Biddy, M. J., and Beckham, G. T. (2014). Alkaline pretreatment of corn stover: bench-scale fractionation and stream characterization, ACS Sustainable Chem. Eng., 2, 1481–1491.
  • Kopelman, R. (1988). Fractal reaction kinetics, Science, 241, 1620–1626.
  • Li, K. N., Wan, J. M., Wang, X., Wang, J. F., and Zhang, J. H. (2016a). Comparison of dilute acid and alkali pretreatments in production of fermentable sugars from bamboo: effect of Tween 80, Ind. Crop Prod., 83, 414–422.
  • Li, Y. F., Sun, Z. P., Ge, X. Y., and Zhang, J. H. (2016b). Effects of lignin and surfactant on adsorption and hydrolysis of cellulases on cellulose, Biotechnol. Biofuels., 9, 20
  • Liu, Y. Y., Xu, J. L., Zhang, Y., Liang, C. Y., He, M. C., Yuan, Z. H., and Xie, J. (2016). Reinforced alkali-pretreatment for enhancing enzymatic hydrolysis of sugarcane bagasse, Fuel Process Technol., 143, 1–6.
  • Liu, Y. Y., Zhang, Y., Xu, J. L., Sun, Y. M., Yuan, Z. H., and Xie, J. (2015a). Consolidated bioprocess for bioethanol production with alkali-pretreated sugarcane bagasse, Appl. Energy., 157, 517–522.
  • Liu, Z.-H., Qin, L., Li, B.-Z., and Yuan, Y.-J. (2015b). Physical and chemical characterizations of corn stover from leading pretreatment methods and effects on enzymatic hydrolysis, ACS Sustainable Chem. Eng., 3, 140–146.
  • Melero, J. A., Iglesias, J., and Garcia, A. (2012). Biomass as renewable feedstock in standard refinery units. Feasibility, opportunities and challenges, Energy Environ. Sci., 5, 7393–7420.
  • Meng, X. Z., Wells, T., Sun, Q. N., Huang, F., and Ragauskas, A. (2015). Insights into the effect of dilute acid, hot water or alkaline pretreatment on the cellulose accessible surface area and the overall porosity of populus, Green Chem., 17, 4239–4246.
  • Rodríguez-Zúñiga, U. F., Cannella, D., Giordano, R. d. C., Giordano, R. d. L. C., Jørgensen, H., and Felby, C. (2015). Lignocellulose pretreatment technologies affect the level of enzymatic cellulose oxidation by LPMO, Green Chem., 17, 2896–2903.
  • Schnell, S., and Turner, T. E. (2004). Reaction kinetics in intracellular environments with macromolecular crowding: simulations and rate laws, Prog. Biophys. Mol. Biol., 85, 235–260.
  • Sheldon, R. A. (2018). The road to biorenewables: carbohydrates to commodity chemicals, ACS Sustainable Chem. Eng., 6, 4464–4480.
  • Soares, I. B., Mendes, K. C. S., Benachour, M., and Abreu, C. A. M. (2017). Evaluation of the effects of operational parameters in the pretreatment of sugarcane bagasse with diluted sulfuric acid using analysis of variance, Chem. Eng. Commun., 204, 1369–1390.
  • Sun, D., Alam, A., Tu, Y. Y., Zhou, S. G., Wang, Y. T., Xia, T., Huang, J. F., Li, Y., Zahoor Wei, X. Y., Hao, B., and Peng, L. C. (2017). Steam-exploded biomass saccharification is predominately affected by lignocellulose porosity and largely enhanced by Tween-80 in miscanthus, Bioresour. Technol., 239, 74–81.
  • Valjamae, P., Kipper, K., Pettersson, G., and Johansson, G. (2003). Synergistic cellulose hydrolysis can be described in terms of fractal-like kinetics, Biotechnol. Bioeng., 84, 254–257.
  • Wang, W., Chen, X. Y., Tan, X. S., Wang, Q., Liu, Y. Y., He, M. C., Yu, Q., Qi, W., Luo, Y., Zhuang, X. S., and Yuan, Z. H. (2017). Feasibility of reusing the black liquor for enzymatic hydrolysis and ethanol fermentation, Bioresour. Technol., 228, 235–240.
  • Wang, Z. L., and Feng, H. (2010). Fractal kinetic analysis of the enzymatic saccharification of cellulose under different conditions, Bioresour. Technol., 101, 7995–8000.
  • Wen, W., Zhuang, X., Yuan, Z., Qiang, Y. U., Wei, Q. I., Wang, Q., and Tan, X. (2013). Effects of ions and surfactant on enzymatic hydrolysis of sweet sorghum bagasse, Ciesc J., 64, 3767–3774.
  • Xin, D. L., Yang, M., Chen, X., Zhang, Y., Ma, L., and Zhang, J. H. (2017). Improving the hydrolytic action of cellulases by Tween 80: offsetting the lost activity of cellobiohydrolase Cel7A, ACS Sustainable Chem. Eng., 5, 11339–11345.
  • Xu, F., and Ding, H. S. (2007). A new kinetic model for heterogeneous (or spatially confined) enzymatic catalysis: contributions from the fractal and jamming (overcrowding) effects, Appl. Catal. A-Gen., 317, 70–81.
  • Xu, J. L., Zhang, X. M., and Cheng, J. J. (2012). Pretreatment of corn stover for sugar production with switchgrass-derived black liquor, Bioresour. Technol., 111, 255–260.
  • Yu, Q., Zhu, Y. P., Bian, S. X., Chen, L., Zhuang, X. S., Zhang, Z. Y., Wang, W., Yuan, Z. H., Hu, J. H., and Chen, J. (2017). Structural characteristics of corncob and eucalyptus contributed to sugar release during hydrothermal pretreatment and enzymatic hydrolysis, Cellulose, 24, 4899–4909.
  • Yu, Q., Zhuang, X., Lv, S., He, M., Zhang, Y., Yuan, Z., Qi, W., Wang, Q., Wang, W., and Tan, X. (2013). Liquid hot water pretreatment of sugarcane bagasse and its comparison with chemical pretreatment methods for the sugar recovery and structural changes, Bioresour. Technol., 129, 592–598.
  • Yu, Q., Zhuang, X., Yuan, Z., Qi, W., Wang, Q., and Tan, X. (2011a). The effect of metal salts on the decomposition of sweet sorghum bagasse in flow-through liquid hot water, Bioresour. Technol., 102, 3445–3450.
  • Yu, Q., Zhuang, X., Yuan, Z., Wang, W., Qi, W., Wang, Q., and Tan, X. (2011b). Step-change flow rate liquid hot water pretreatment of sweet sorghum bagasse for enhancement of total sugars recovery, Appl. Energy., 88, 2472–2479.
  • Yu, Q., Zhuang, X., Yuan, Z., Wang, Q., Qi, W., Wang, W., Zhang, Y., Xu, J., and Xu, H. (2010). Two-step liquid hot water pretreatment of eucalyptus grandis to enhance sugar recovery and enzymatic digestibility of cellulose, Bioresour. Technol., 101, 4895–4899.
  • Zanchetta, A., dos Santos, A. C. F., Ximenes, E., Nunes, C. D. C., Boscolo, M., Gomes, E., and Ladisch, M. R. (2018). Temperature dependent cellulase adsorption on lignin from sugarcane bagasse, Bioresour. Technol., 252, 143–149.
  • Zhang, Y., Xu, J. L., Qi, W., Yuan, Z. H., Zhuang, X. S., Liu, Y., and He, M. C. (2012). A fractal-like kinetic equation to investigate temperature effect on cellulose hydrolysis by free and immobilized cellulase, Appl. Biochem. Biotechnol., 168, 144–153.
  • Zhang, Y., Xu, J. L., Xu, H. J., Yuan, Z. H., and Guo, Y. (2010). Cellulase deactivation based kinetic modeling of enzymatic hydrolysis of steam-exploded wheat straw, Bioresour. Technol., 101, 8261–8266.
  • Zheng, Q., Zhou, T. T., Wang, Y. B., Cao, X. H., Wu, S. Q., Zhao, M. L., Wang, H. Y., Xu, M., Zheng, B. D., Zheng, J. G., and Guan, X. (2018). Pretreatment of wheat straw leads to structural changes and improved enzymatic hydrolysis, Sci. Rep., 8, 1321.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.