185
Views
6
CrossRef citations to date
0
Altmetric
Research Paper

Determination of adsorption operating conditions in dynamic mode on basis of batch study: Application for Dimethylphthalate elimination on activated carbon prepared from Arundo donax

, , &

References

  • Aharoni, C., Sideman, S., and Hoffer, E. (1979). Adsorption of phosphate ions by collodion-coated alumina, J. Chem. Technol. Biotechnol., 29, 404–412.
  • Ahmad, R., Liow, P.-S., Spencer, D. F., and Jasieniuk, M. (2008). Molecular evidence for a single genetic clone of invasive Arundo donax in the United States, Aquat. Bot., 88, 113–120.
  • Ahmed, M. J. (2016). Potential of Arundo donax L. Stems as renewable precursors for activated carbons and utilization for wastewater treatments: Review, J. Taiwan. Inst. Chem. Eng., 63, 336–343.
  • Allen, S. J., Gan, Q., Matthews, R., and Johnson, P. A. (2003). Comparison of optimised isotherm models for basic dye adsorption by kudzu, Bioresour. Technol. 88, 143–152.
  • Amrhar, O., Nassali, H., and Elyoubi, M. S. (2015). Application of nonlinear regression analysis to select the optimum absorption isotherm for methylene blue adsorption onto natural Illitic clay, Bulletin Soc R Sci Liège Ed., 84, 116–130.
  • Ayoob, S., Gupta, A., and Bhakat, P. (2007). Analysis of breakthrough developments and modeling of fixed bed adsorption system for as(V) removal from water by modified calcined bauxite (MCB), Sep. Purif. Technol., 52, 430–438.
  • Bohart, G. S., and Adams, E. Q. (1920). Some aspects of the behavior of charcoal with respect to chlorine, 1. J. Am. Chem. Soc., 42 (2), 523–544.
  • Chayid, M. A., and Ahmed, M. J. (2015). Amoxicillin adsorption on microwave prepared activated carbon from Arundo donax Linn: Isotherms, kinetics, and thermodynamics studies, J. Environ. Chem. Eng., 3, 1592–1601.
  • Chen, C.-Y., and Chung, Y.-C. (2006). Removal of phthalate esters from aqueous solutions by chitosan bead, J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng. A, 41, 235–248.
  • Chen, J. (2016). Activated Carbon Fiber and Textiles. Elsevier & Woodhead Publishing.
  • Chen, J. P., and Wang, X. (2000). Removing copper, zinc, and lead ion by granular activated carbon in pretreated fixed-bed columns, Sep. Purif. Technol., 19 (3), 157167.
  • Chern, J.-M., and Wu, C.-Y. (2001). Desorption of dye from activated carbon beds: Effects of temperature, PH, and alcohol, Water Res., 35, 4159–4165.
  • Chiang, Y.-C., Lee, C.-Y., and Lee, H. C. (2007). Surface chemistry of polyacrylonitrile- and Rayon-Based activated carbon fibers after Post-Heat treatment, Mater. Chem. Phys., 101, 199–210.
  • Clara, M., Windhofer, G., Hartl, W., Braun, K., Simon, M., Gans, O., Scheffknecht, C., and Chovanec, A. (2010). Occurrence of phthalates in surface runoff, untreated and treated wastewater and fate during wastewater treatment, Chemosphere 78, 1078–1084.
  • Di Natale, F., Erto, A., and Lancia, A. (2013). Desorption of arsenic from exhaust activated carbons used for water purification, J. Hazard Mater., 260, 451–458.
  • Dong-Lei, W., Bao-Lan, H., Ping, Z., and Mahmood, Q. (2007). Anoxic biodegradation of dimethyl phthalate (DMP) by activated sludge cultures under Nitrate-Reducing conditions, J. Environ. Sci-China 19, 1252–1256.
  • Doufene, N., Berrama, T., Tahtat, D., Benredouane, S., and Nekaa, C. (2018). Combination of two experimental designs to optimize the dimethylphthalate elimination on activated carbon elaborated from Arundo donax, Arab. J. Sci. Eng. doi: 10.1007/s13369-018-3531-5
  • Douglas, G. R., Hugenholtz, A. P., and Blakey, D. H. (1986). Genetic toxicology of phthalate esters: Mutagenic and other genotoxic effects, Environ. Health. Perspect., 65, 255–262.
  • Fallou, H., Cimetière, N., Giraudet, S., Wolbert, D., and Le Cloirec, P. (2016). Adsorption of pharmaceuticals onto activated carbon fiber cloths – modeling and extrapolation of adsorption isotherms at very low concentrations, J. Environ. Manage., 166, 544–455.
  • Fromme, H., Küchler, T., Otto, T., Pilz, K., Müller, J., and Wenzel, A. (2002). Occurrence of phthalates and bisphenol a and F in the environment, Water Res., 36, 1429–1438.
  • Fu, Y., and Viraraghavan, T. (2003). Column studies for biosorption of dyes from aqueous solutions on immobilised Aspergillus niger fungal biomass, Water SA, 29, 465–472.
  • Gimbert, F., Morin-Crini, N., Renault, F., Badot, P.-M., and Crini, G. (2008). Adsorption isotherm models for dye removal by cationized Starch-Based material in a single component system: Error analysis, J. Hazard. Mater., 157, 34–46.
  • Gunay, A. (2007). Application of nonlinear regression analysis for ammonium exchange by natural (Bigadiç) clinoptilolite, J. Hazard. Mater., 148, 708–713.
  • Hadi, M., Samarghandi, M. R., and McKay, G. (2010). Equilibrium Two-Parameter isotherms of acid dyes sorption by activated carbons: Study of residual errors, Chem. Eng. J., 160, 408–416.
  • Hamdaoui, O., and Naffrechoux, E. (2007a). Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated CarbonPart I. Two-Parameter models and equations allowing determination of thermodynamic parameters, J. Hazard. Mater., 147, 381–394.
  • Hamdaoui, O., and Naffrechoux, E. (2007b). Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated Carbon Part II. Models with more than two parameters, J. Hazard. Mater., 147, 401–411.
  • Hamed, M. M., Ali, M. M. S., and Holiel, M. (2016). Preparation of activated carbon from doum stone and its application on adsorption of 60Co and 152 + 154Eu: Equilibrium, kinetic and thermodynamic studies, J. Environ. Radioactivity, 164, 113–124.
  • Han, R., Wang, Y., Zhao, X., Wang, Y., Xie, F., Cheng, J., and Tang, M. (2009). Adsorption of methylene blue by phoenix tree leaf powder in a Fixed-Bed column: Experiments and prediction of breakthrough curves, Desalination, 245, 284–297.
  • Ho, Y. S., and McKay, G. (1999). The sorption of lead(II) ions on peat, Water Res., 33, 578–584.
  • Huang, H., Yang, C., Zhang, H., and Liu, M. (2008). Preparation and characterization of octyl and Octadecyl-Modified mesoporous SBA-15 silica molecular sieves for adsorption of dimethyl phthalate and diethyl phthalate, Microporous Mesoporous Mater., 111, 254–259.
  • Hutchins, R. A. (1973). New method simplifies design of activated-carbon system, Am. J. Chem, 80, 133–138.
  • Jia, H., Cao, Y., Qu, G., Wang, T., Guo, X., and Xia, T. (2018). Dimethyl phthalate contaminated soil remediation by dielectric barrier discharge: Performance and residual toxicity, Chem. Eng. J., 351, 1076–1084.
  • Jossens, L., Prausnitz, J. M., Fritz, W., Schlünder, E. U., and Myers, A. L. (1978). Thermodynamics of multi-solute adsorption from dilute aqueous solutions, Chem. Eng. Sci., 33 (8), 1097–1106.
  • Kiliç, F., and Sarici-Özdemir, C. (2016). Experimental and modeling studies of methylene blue adsorption onto particles of peanut shell, Particul. Sci. Technol., 34, 658–664.
  • Kundu, S., and Gupta, A. K. (2006). Arsenic adsorption onto iron oxide-coated cement (IOCC): regression analysis of equilibrium data with several isotherm models and their optimization, Chem. Eng. J., 122, 93–106.
  • Liang, D.-W., Zhang, T., and Fang, H. H. P. (2007). Denitrifying degradation of dimethyl phthalate, Appl. Microbiol. Biotechnol., 74, 221–229.
  • Liao, W., Zheng, T., Wang, P., Tu, S., and Pan, W. (2010). Efficient Microwave-Assisted photocatalytic degradation of endocrine disruptor dimethyl phthalate over composite catalyst ZrOx/ZnO, J. Environ. Sci.-China, 22, 1800–1806.
  • Limousin, G., Gaudet, J.-P., Charlet, L., Szenknect, S., Barthès, V., and Krimissa, M. (2007). Sorption isotherms: a review on physical bases, modeling and measurement, Appl. Geochem., 22, 249–275.
  • Liu, Y., Wu, D., Peng, S., Feng, Y., and Liu, Z. (2019). Enhanced mineralization of dimethyl phthalate by heterogeneous ozonation over nanostructured Cu-Fe-O surfaces: Synergistic effect and radical chain reactions, Sep. Purif. Technol., 209, 588–597.
  • Ma, T. T., Teng, Y., Luo, Y. M., and Christie, P. (2013). Legume-Grass intercropping phytoremediation of phthalic acid esters in soil near An Electronic Waste Recycling Site: A Field Study, Int. J. Phytoremediation, 15, 154–167.
  • Malkoc, E., and Nuhoglu, Y. (2006). Removal of Ni(II) ions from aqueous solutions using waste of tea factory: Adsorption on a Fixed-Bed column, J. Hazard. Mater., 135, 328–336.
  • Mall, I. D., Srivastava, V. C., and Agarwal, N. K. (2006). Removal of Orange-G and methyl violet dyes by adsorption onto bagasse fly ash—kinetic study and equilibrium isotherm analyses, Dyes Pigm., 69, 210–223.
  • Marsh, H., and Rodriguez-Reinoso, F. (2006). Activated Carbon. Elsevier Science & Technology Books, Amsterdam, Netherlands.
  • Milonjic, S. (2007). A consideration of the correct calculation of thermodynamic parameters of adsorption, J. Serb. Chem. Soc., 72, 1363–1367.
  • Niazi, J. H., and Karegoudar, T. B. (2001). Degradation of dimethylphthalate by cells of BACILLUS SP. Immobilized in calcium alginate and polyurethane foam, J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng., 36, 1135–1144.
  • Osman, B., Özer, E. T., Demirbel, E., Güçer, S., and Beşirli, N. (2013). Synthesis and characterization of L-Tryptophan containing microbeads for removal of dimethyl phthalate from aqueous phase, Sep. Purif. Technol., 109, 40–47.
  • Osman, B., Özer, E. T., Kara, A., Güçer, S., and Beşirli, N. (2012). Assessment of dimethyl phthalate removal from aqueous phase using barium hexaferrite containing magnetic beads, J. Colloid. Interface. Sci., 378, 167–174.
  • Özacar, M., and Şengil, I. A. (2004). Application of kinetic models to the sorption of disperse dyes onto alunite, Colloid. Surface. A, 242, 105–113.
  • Özcan, A. S., Erdem, B., and Özcan, A. (2005). Adsorption of acid blue 193 from aqueous solutions onto BTMA-Bentonite, Colloid. Surface. A, 266, 73–81.
  • Petrovic, M., Radjenovic, J., Postigo, C., Kuster, M., Farre, M., López Alda, M., and Barceló, D. (2008). Emerging contaminants in waste waters: Sources and occurrence. In Emerging Contaminants from Industrial and Municipal Waste., eds Damià Barceló and Mira Petrovic, Berlin, Heidelberg: Springer Berlin Heidelberg.
  • Porter, J. F., McKay, G., and Choy, K. H. (1999). The prediction of sorption from a binary mixture of acidic dyes using single-and mixed-isotherm variants of the ideal adsorbed solute theory, Chem. Eng. Sci., 54, 5863–5885.
  • Rahmani-Sani, A., Hosseini-Bandegharaei, A., Hosseini, S.-H., Kharghani, K., Zarei, H., and Rastegar, A. (2015). Kinetic, equilibrium and thermodynamic studies on sorption of uranium and thorium from aqueous solutions by a selective impregnated resin containing carminic acid, J. Hazard. Mater., 286, 152–163.
  • Rangabhashiyam, S., Anu, N., Giri Nandagopal, M. S., and Selvaraju, N. (2014). Relevance of isotherm models in biosorption of pollutants by agricultural byproducts, J. Environ. Chem. Eng., 2, 398–414.
  • Sarici-Özdemir, Ç. (2014). Removal of methylene blue by activated carbon prepared from waste in a Fixed-Bed column, Particul. Sci. Technol., 32, 311–318.
  • Sarıcı-Özdemir, Ç. (2017). Examination of the adsorption for methylene blue using different adsorbents, Desalin. Water. Treatment., 90, 311–319.
  • Sarıcı-Özdemir, Ç., and Önal, Y. (2013). Statistical analysis of equilibrium and kinetic data for ascorbic acid removal from aqueous solution by activated carbon, Desalin. Water. Treatment., 51, 4658–4665.
  • Sarici-Özdemir, Ç., and Önal, Y. (2014). Error analysis studies of dye adsorption onto activated carbon from aqueous solutions, Particulate Sci. Technol., 32, 20–27.
  • Sarin, V., Singh, T. S., and Pant, K. K. (2006). Thermodynamic and breakthrough column studies for the selective sorption of chromium from industrial effluent on activated eucalyptus bark, Bioresour. Technol., 97, 1986–1993.
  • Shrestha, R. M., Yadav, A. P., Pokharel, B. P., and Pradhananga, R. R. (2012). Preparation and characterization of activated carbon from Lapsi (Choerospondias Axillaris) seed stone by chemical activation with phosphoric acid, J. Res. Chem. Sci., 2 (10), 80–86.
  • Song, H.-L., Liang, L., and Yang, K.-Y. (2014). Removal of several metal ions from aqueous solution using powdered stem of Arundo donax L. as a new biosorbent, Chem. Eng. Res. Des., 92, 1915–1922.
  • Stuart, M., Lapworth, D., Crane, E., and Hart, A. (2012). Review of risk from potential emerging contaminants in UK groundwater, Sci. Total Environ. 416, 1–21.
  • Suksabye, P., Thiravetyan, P., and Nakbanpote, W. (2008). Column study of chromium(VI) adsorption from electroplating industry by coconut coir pith, J. Hazard. Mater. 160, 56–62.
  • Sun, Y., Yue, Q., Gao, B., Gao, Y., Li, Q., and Wang, Y. (2013a). Adsorption of hexavalent chromium on Arundo donax Linn activated carbon Amine-Crosslinked copolymer, Chem. Eng. J., 217, 240–247.
  • Sun, Y., Yue, Q., Gao, B., Wang, Y., Gao, Y., and Li, Q. (2013b). Preparation of highly developed mesoporous activated carbon by H4P2O7 activation and its adsorption behavior for oxytetracycline, Powder. Technol., 249, 54–62.
  • Tan, I. A. W., Hameed, B. H., and Ahmad, A. L. (2007). Equilibrium and kinetic studies on basic dye adsorption by oil palm fibre activated carbon, Chem. Eng. J., 127, 111–119.
  • Tang, Y., Pan, Z., and Li, L. (2017). PH-Insusceptible Cobalt-Manganese immobilizing mesoporous siliceous MCM-41 catalyst for ozonation of dimethyl phthalate, J. Colloid. Interface. Sci., 508, 196–202.
  • Üner, O., and Bayrak, Y. (2018). The effect of carbonization temperature, carbonization time and impregnation ratio on the properties of activated carbon produced from arundo donax, Micropor. Mesopor. Mater., 268, 225–234.
  • Vaňková, K., Ačai, P., and Polakovič, M. (2010). Modelling of Fixed-Bed adsorption of Mono-, Di-, and fructooligosaccharides on a Cation-Exchange resin, Biochem. Eng. J., 49, 84–88.
  • Vega, D., and Bastide, J. (2003). Dimethylphthalate hydrolysis by specific microbial esterase, Chemosphere, 51, 663–668.
  • Vijayaraghavan, K., Jegan, J., Palanivelu, K., and Velan, M. (2005). Batch and column removal of copper from aqueous solution using a brown marine alga Turbinaria ornata, Chem. Eng. J., 106, 177–184.
  • Vijayaraghavan, K., Padmesh, T., Palanivelu, K., and Velan, M. (2006). Biosorption of nickel(II) ions onto Sargassum wightii: Application of Two-Parameter and Three-Parameter isotherm models, J. Hazard. Mater., 133, 304–308.
  • Wang, J., Wang, F., Yao, J., Wang, R., Yuan, H., Masakorala, K., and Choi, M. M. F. (2013). Adsorption and desorption of dimethyl phthalate on carbon nanotubes in aqueous copper(II) solution, Colloid. Surface. A, 417, 47–56.
  • Wang, P., Cao, M., Wang, C., Ao, Y., Hou, J., and Qian, J. (2014). Kinetics and thermodynamics of adsorption of methylene blue by a magnetic graphene-carbon nanotube composite, Appl. Surf. Sci., 290, 116–124.
  • Wang, G., Chen, Q., Liu, Y., Ma, D., Xin, Y., Ma, X., and Zhang, X. (2018a). In situ synthesis of graphene/WO 3 Co-Decorated TiO2 nanotube array photoelectrodes with enhanced photocatalytic activity and degradation mechanism for dimethyl phthalate, Chem. Eng. J., 337, 322–332.
  • Wang, T., Jia, H., Guo, X., Xia, T., Qu, G., Sun, Q., and Yin, X. (2018b). Evaluation of the potential of dimethyl phthalate degradation in aqueous using sodium percarbonate activated by discharge plasma, Chem. Eng. J., 346, 65–76.
  • Wang, T., Qu, G., Yin, X., Sun, Q., Liang, D., Guo, X., and Jia, H. (2018c). Dimethyl phthalate elimination from micro-polluted source water by surface discharge plasma: Performance, active species roles and mechanisms, J. Hazard. Mater., 357, 279–288.
  • Xu, B., Gao, N.-Y., Cheng, H., Xia, S.-J., Rui, M., and Zhao, D.-D. (2009). Oxidative degradation of dimethyl phthalate (DMP) by UV/H(2)O(2) process, J. Hazard. Mater., 162, 954–959.
  • Xu, L. J., Chu, W., and Graham, N. (2013). A systematic study of the degradation of dimethyl phthalate using a high-frequency ultrasonic process, Ultrason. Sonochem, 20, 892–899.
  • Xu, Z., Zhang, W., Pan, B., Hong, C., Lv, L., Zhang, Q., Pan, B., and Zhang, Q. (2008). Application of the polanyi potential theory to phthalates adsorption from aqueous solution with Hyper-Cross-Linked polymer resins, J. Colloid. Interface. Sci., 319, 392–397.
  • Yazdani, M., Tuutijärvi, T., Bhatnagar, A., and Vahala, R. (2016). Adsorptive removal of arsenic(V) from aqueous phase by feldspars: Kinetics, mechanism, and thermodynamic aspects of adsorption, J. Mol. Liq., 214, 149–156.
  • Yuan, B.-L., Li, X.-Z., and Graham, N. (2008). Aqueous oxidation of dimethyl phthalate in a Fe(VI)-TiO2-UV reaction system, Water. Res., 42, 1413–1420.
  • Yuh-Shan, H. (2004). Citation review of Lagergren kinetic rate equation on adsorption reactions, Scientometrics, 59, 171–177.
  • Zeng, P., Yan-Pui Moy, B., Song, Y.-H., and Tay, J.-H. (2008). Biodegradation of dimethyl phthalate by Sphingomonas Sp. isolated from phthalic-acid-degrading aerobic granules, Appl. Microbiol. Biotechnol., 80, 899–905.
  • Zhang, J., Zhang, C., Zhu, Y., Li, J., and Li, X. (2018). Biodegradation of seven phthalate esters by Bacillus mojavensis B1811, Int. Biodeter. Biodegrad., 132, 200–207.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.