103
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Separation of sago starch from model suspensions by tangential flow filtration

, , ORCID Icon, ORCID Icon, , ORCID Icon, & show all

References

  • Abdelrasoul, A., Doan, A., and Lohi, A. (2013). Fouling in membrane filtration and remediation methods. In Mass Transfer – Advances in Sustainable Energy and Environment Oriented Numerical Modeling, Chapter 8, ed Nakajima, H., 195–218, Intech, London.
  • Adham, S. S., Chiu, K. P., Lehman, G., Howe, K. J., Marwah, A., Mysore, C., Clouet, J., Do-Quang, Z., and Cagnard, O. (2006). Optimization of Membrane Treatment for Direct and Clarified Water Filtration, 179, AWWA Research Foundation, Denver, CO.
  • APHA (2005). Standard Methods for the Examination of Water and Wastewater, 21st ed., American Public Health Association, Washington, D.C.
  • Bai, R., and Leow, H. F. (2002). Microfiltration of activated sludge wastewater – The effect of system operation parameters, Sep. Purif. Technol., 29, 189–198. doi: 10.1016/S1383-5866(02)00075-8.
  • Burrell, M. M. (2003). Starch: the need for improved quality or quantity-an overview, J. Exp. Bot., 54, 451–456. doi: 10.1093/jxb/erg049.
  • Castro-Muñoz, R., and Yáñez-Fernández, J. (2015). Valorization of nixtamalization wastewaters (Nejayote) by integrated membrane process, Food Bioprod. Proc., 95, 7–18. doi: 10.1016/j.fbp.2018.08.010
  • Carvajal-Zarrabal, O., Nolasco-Hipólito, C., Bujang, K. B., and Ishizaki, A. (2009). Production of nisin Z using Lactococcus lactis IO-1 from hydrolyzed sago starch, J. Ind. Microbiol. Biotechnol., 36, 409–415. doi: 10.1007/s10295-008-0511-x
  • Choi, H., Zhang, K., Dionysiou, D. D., Oerther, D. B., and Sorial, D. A. (2005). Effect of permeate flux and tangential flow on membrane fouling for wastewater treatment, Sep. Purif. Technol., 45, 68–78. doi: 10.1016/j.seppur.02.010.
  • Defrance, L., and Jaffrin, M. Y. (1999). Comparison between filtrations at fixed transmembrane pressure and fixed permeate flux: Application to a membrane bioreactor used for wastewater treatment, J. Membr. Sci., 152, 203–210. doi: 10.1016/S0376-7388(98)00220-8.
  • DOAS. (2013). Report on Sago Export Department of Agriculture Statistics of Sarawak 2013, Sago 6, 27–31. http://doa.sarawak.gov.my/
  • Drews, A. (2010). Membrane fouling in membrane bioreactors-characterisation, contradictions, cause, and cures, J. Membr. Sci., 363, 1–28. doi: 10.1016/j.memsci.2010.06.046.
  • Field, R., Wu, D. M., Howell, J. A., and Gupta, B. B. (1995). Critical flux concept for microfiltration fouling, J. Membr. Sci., 100, 259–272. doi: 10.1016/0376-7388(94)00265-Z.
  • Flach, M. (1997). Sago Palm: Metroxylon Sagu Rottb., Promoting the Conservation and Use of Underutilized and Neglected Crops 13, Institute of Plant Genetics and Crop Plant Research, Gatersleben/International Plant Genetic Resources Institute, Rome, Italy.
  • Galanakis, C. M., and Castro-Muñoz, R., Cassano A., and Conidi, C. (2016). Recovery of high-added-value compounds from food waste by membrane technology. In Membrane Technologies for Biorefining, eds. Figoli A., Cassano, A., and Basile A., 189–215. Woodhead Publishing, Cambridge. doi: 10.1016/b978-0-08-100451-7.00008-6.
  • Hinkova, A., Bubik, Z., Pour, V., Henke, S., and Kadlec, P. (2005). Application of cross-flow ultrafiltration on inorganic membranes in purification of food materials, Czech. J. Food Sci., 23, 103–110.
  • Horigome, T., Sakaguchi, E., Takamura, Y., Bintoro, M. H., Haryanto, B., Tandi, E. J., and Marangkey, M. P. (1991). The feeding value of pith and pith residue from sago palms. In Proceedings of the Fourth International Sago Symposium, August 6–9, eds Thai-Tsiung N., Yiu-Liong, T., and Hong-Siong, K., pp. 195–200, Kuching, Sarawak, Malaysia.
  • Ikonić, B. B., Zavargo, Z. Z., Jokić, A. I., Šereš, Z. I., Vatai, G. N., and Peruničić, M. B. (2011). Microfiltration of wheat starch suspensions using multichannel ceramic membrane, Hem. Ind., 65, 131–138. doi: 10.2298/HEMIND101129074I.
  • Kumaran, S., Sastry, C. A., and Vikineswary, S. (1997). Solid substrate fermentation of sago ‘hampas’ for laccase production, Stud. Environ. Sci., 66, 239–248. doi: 10.1016/S0166-1116(97)80047-7.
  • Le-Clech, P., Chen, V., and Fane, T. A. G. (2006). Fouling in membrane bioreactors used in wastewater treatment, J. Membr. Sci., 284, 17–53. doi: 10.1016/j.memsci.2006.08.019.
  • Lim, R. L., and Bai, R. (2003). Membrane fouling and cleaning in microfiltration of activated sludge wastewater, J. Membr. Sci., 216, 2, 279–290. doi: 10.1016/S0376-7388(03)00083-8.
  • Meuser, F., and Smolnik, H.-D. (1976). Zur Problematik der Ultrafiltration von Weizenstärke-Prozeßwasser, Starch/Stärke., 28, 421–425. doi: 10.1002/star.19760281205
  • Middlewood, P., and Carson, J. (2012). Extraction of amaranth starch from an aqueous medium using microfiltration: Membrane fouling and cleaning, J. Membr. Sci., 411–412, 22–29. doi: 10.1016/j.memsci.2012.04.008.
  • Ochando-Pulido, J. M., and Martínez-Ferez, A. (2015). Impacts of operating conditions on nanofiltration of secondary treated two-phase olive mill wastewater, J. Environ. Manag., 161, 219–227. doi: 10.1016/j.jenvman.2015.07.014.
  • Ognier, O., Wisniewski, C., and Grasmick, A. (2002). Characterization and modelling of fouling in membrane bioreactors, Desalin, 146, 141–147. doi: 10.1016/S0011-9164(02)00508-8
  • Ousman, M., and Bennasar, M. (1995). Determination of various hydraulic resistances during cross-flow filtration of a starch grain suspension through inorganic membranes, J. Membr. Sci., 105, 1–21. doi: 10.1016/0376-7388(94)00266-2.
  • Phang, S. M., Miah, M. S., Yeoh, B. G., and Hashim, M. A. (2000). Spirulina cultivation in digested sago starch factory wastewater, J. Appl. Phycol., 12, 395–400. doi: 10.1023/A:1008157731731.
  • Rashid, W. A., Musa, H., Wong, S. K., and Bujang, K. (2010). The potential of extended aeration system for sago effluent treatment, Am. J. Appl. Sci., 7, 616–619.
  • Rausch, K. D. (2002). Front end to back pipe: Membrane technology in the starch processing industry, Starch/Stärke, 54, 273–284. doi: 10.1002/1521-379X(200207)54:7.
  • Šaranović, Ž., Šereš, Z., Jokić, A., Pajin, B., Dokić, L., Gyura, J., Dalmacija, B., and Šoronja Simović, D. (2011). Reduction of solid content in starch industry wastewater by microfiltration, Starch/Starke, 63, 64–74. [
  • Sargolzaei, J., Moghaddam, A. H., and Shayegan, J. (2011). Statistical assessment of starch removal from starchy wastewater using membrane technology, Korean J. Chem. Eng., 28, 1889–1896. doi: 10.1007/s11814-011-0050-4.
  • Shukla, R., Tandon, R., Nguyen, M., and Cheryan, M. (2000). Microfiltration of starch suspensions using a tubular stainless steel membrane, Membr. Technol. 2000, 5–8. doi: 10.1016/S0958-2118(00)88585-7.
  • Singh, N., and Cheryan, M. (1997). Fouling of a ceramic microfiltration membrane by corn starch hydrolysate, J. Membr. Sci., 135, 195–202. doi: 10.1016/S0376-7388(97)00139-7.
  • Tarleton, E. S., and Wakeman, R. J. (1993). Understanding flux decline in crossflow microfiltration. Part 1 - Effects of particle and pore size, Chem. Eng. Res. Des., 71, 399–410.
  • Tran-Ha, M. H., and Wiley, D. E. (1998). The relationship between membrane cleaning efficiency and water quality, J. Membr. Sci., 145, 99–110. doi: 10.1016/S0376-7388(98)00053-2.
  • Vikineswary, S., Getha, K., Maheswary, S., Chong, V. C., Shaliza, I., and Sastry, C. A. (1997). Growth of Rhodopseudomonas palustris strain B1 in sago starch processing wastewater, Glob. Environ. Biotechnol., 66, 335–348. doi: 10.1016/S0166-1116(97)80054-4.
  • WEF. (2006). Membrane Systems for Wastewater Treatment, WEF Press, New York, N.Y.
  • Wiesner, M. R., Veerapaneni, S., and Brejchova, D. (1992). Improvement in microfiltration using coagulation pretreatment. In Proceedings of the Fifth Gothenburg Symposium on Chemical Water and Wastewater Treatment II, eds Klute, R. and Hahn, H. H., 20–40, Springer, Nice, France.
  • Yunus, N., Jahim, J. M., Anuar, N., S. Abdullah, S. R., and Kofli, N. T. (2014). Batch fermentative hydrogen production utilising sago (Metroxylon sp.) starch processing effluent by enriched sago sludge consortia, Int. J. Hydrogen Energ., 39, 19937–19946. doi:10.1016/j.ijhydene.2014.10.015
  • Zhang, Y., Wan, Y., Pan, G., Shi, H., Yan, H., Xu, J., Guo, M., Wang, Z., and Liu, Y. (2017). Surface modification of polyamide reverse osmosis membrane with sulfonated polyvinyl alcohol for antifouling, Appl. Surf. Sci., 419, 177–187. doi:10.1016/j.apsusc.2017.05.047.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.