365
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Optimization and modeling of UV-TiO2 mediated photocatalytic degradation of golden yellow dye through response surface methodology

, &

References

  • Aarthi, T., Narahari, P., and Madras, G. (2007). Photocatalytic degradation of Azure and Sudan dyes using nano TiO2, J. Hazard. Mater., 149, 725–734.
  • Abdalla, K. Z., and Hammam, G. (2014). Correlation between biochemical oxygen demand and chemical oxygen demand for various wastewater treatment plants in Egypt to obtain the biodegradability indices, Int. J. Sci.: Basic Appl. Res., 13, 42–48.
  • Adesina, A. A. (2004). Industrial exploitation of photocatalysis: Progress, perspectives and prospects, Catal. Surv. Asia, 8, 265–273.
  • Ajmal, A., Majeed, I., Malik, R. N., Idriss, H., and Nadeem, M. A. (2014). Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: A comparative overview, RSC Adv., 4, 37003–37026.
  • Anastasi, A., Parato, B., Spina, F., Tigini, V., Prigione, V., and Varese, G. C. (2011). Decolourisation and detoxification in the fungal treatment of textile wastewaters from dyeing processes, New Biotechnol., 29, 38–45.
  • Barka, N., Assabbane, A., Nounah, A., and Ichou, Y. A. (2008). Photocatalytic degradation of indigo carmine in aqueous solution by TiO2-coated non-woven fibres, J. Hazard. Mater., 152, 1054–1059.
  • Chacon, J. M., Leal, M. T., Sanchez, M., and Bandala, E. R. (2007). Solar photocatalytic degradation of azo-dyes by photo-Fenton process, Dyes Pigments, 169, 144–150.
  • Chong, M. N., Jin, B., Chow, C. W. K., and Saint, C. (2010). Recent developments in photocatalytic water treatment technology: A review, Water Res., 44, 2997–3027.
  • Dariani, R. S., Esmaeili, A., Mortezaali, A., and Dehghanpour, S. (2016). Photocatalytic reaction and degradation of methylene blue on TiO2 nano-sized particles, Optik, 127, 7143–7154.
  • Erdemoglu, S., Aksu, S. K., Sayılkan, F., Izgi, B., Asilturk, M., Sayılkan, H., Frimmel, F., and Gucer, S. (2008). Photocatalytic degradation of congo red by hydrothermally synthesized nanocrystalline TiO2 and identification of degradation products by LC–MS, J. Hazard. Mater., 155, 469–476.
  • Fowler, R. M., and Bright, H. A. (1935). Standardization of permanganate solutions with sodium oxalate, J. Res. Natl. Bur. Stand., 15, 493–501.
  • Franca, M. D., Santos, L. M., Silva, T. A., Borges, K. A., Silva, V. M., Patrocinio, A. O. T., Trovo, A. G., and Machado, A. E. H. (2016). Efficient mineralization of paracetamol using the nanocomposite TiO2/Zn(II) phthalocyanine as photocatalyst, J. Braz. Chem. Soc., 27, 1094–1102.
  • Gaya, U. I., and Abdullah, A. H. (2008). Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems, J. Photochem. Photobiol. C: Photochem. Rev., 9, 1–12.
  • Govindan, K., Chandran, H. T., Raja, M., Maheswari, S. U., and Rangarajan, M. (2017). Electron scavenger-assisted photocatalytic degradation of amido black 10B dye with Mn3O4 nanotubes: A response surface methodology study with Central composite design, J. Photochem. Photobiol. A: Chem., 341, 146–156.
  • Guettai, H., and Amar, H. A. (2005). Photocatalytic oxidation of methyl orange in presence of titanium dioxide in aqueous suspension. Part I: Parametric study, Desalination, 185, 427–437.
  • Gupta, V. K., Jain, R., Agarwal, S., Nayak, A., and Shrivastava, M. (2012). Photodegradation of hazardous dye quinoline yellow catalyzed by TiO2, J. Colloid Interf. Sci., 366, 135–140.
  • Gutierrez-Mata, A. G., Velazquez-Martinez, S., Alvarez-Gallegos, A., Ahmadi, M., Hernandez-Perez, J. A., Ghanbari, F., and Silva-Martinez, S. (2017). Recent overview of solar photocatalysis and solar photo-fenton processes for wastewater treatment, Int. J. Photoenergy, 2017, 1–27.
  • Hameed, B. H., and Lee, T. W. (2009). Degradation of malachite green in aqueous solution by fenton process, J. Hazard. Mater., 164, 468–472.
  • Jaafarzadeh, N., Ghanbari, F., and Ahmadi, M. (2017). Catalytic degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) by nano-Fe2O3 activated peroxymonosulfate: Influential factors and mechanism determination, Chemosphere, 169, 568–576.
  • Junior, O. G., Neto, W. B., Machado, A. E. H., Daniel, D., and Trov, A. G. (2017). Optimization of fipronil degradation by heterogeneous photocatalysis: Identification of transformation products and toxicity assessment, Water Res., 110, 133–140.
  • Kaur, J., and Singhal, S. (2014). Heterogeneous photocatalytic degradation of rose bengal: Effect of operational parameters, Phys B: Condens. Matter, 450, 49–53.
  • Kaur, T., Toor, A. P., and Wanchoo, R. K. (2015). UV-assisted degradation of propiconazole in a TiO2 aqueous suspension: Identification of transformation products and the reaction pathway using GC/MS, Int. J. Environ. Anal. Chem., 95, 494–507.
  • Khamparia, S., and Jaspal, D. (2017). Study of decolorisation of binary dye mixture by response surface methodology, J. Environ. Manage., 201, 316–326.
  • Kritikos, D. E., Xekoukoulotakis, N. P., Psillakis, E., and Mantzavinos, D. (2007). Photocatalytic degradation of reactive black 5 in aqueous solutions: Effect of operating conditions and coupling with ultrasound irradiation, Water Res., 41, 2236–2246.
  • Lachheb, H., Puzenat, E., Houas, A., Ksibi, M., Elaloui, E., Guillard, C., and Herrmann, J. M. (2002). Photocatalytic degradation of various types of dyes (Alizarin S, Crocein orange G, Methyl red, Congo red, Methylene blue) in water by UV-irradiated titania, Appl. Catal. B: Environ., 39, 75–90.
  • Lambropoulou, D., Evgenidou, E., Saliverou, V., Kosma, C., and Konstantinou, I. (2017). Degradation of venlafaxine using TiO2/UV process: Kinetic studies, RSM optimization, identification of transformation products and toxicity evaluation, J. Hazard. Mater., 323, 513–526.
  • Liao, C. H., Kang, S. F., and Hsu, Y. W. (2003). Zero-valent iron reduction of nitrate in the presence of ultraviolet light, organic matter and hydrogen peroxide, Water Res., 37, 4109–4118.
  • Lee, K. M., and Hamid, S. B. A. (2015). Simple response surface methodology: Investigation on advance photocatalytic oxidation of 4-chlorophenoxyacetic acid using UV-Active ZnO photocatalyst, J. Hazard. Mater., 8, 339–354.
  • Ljubas, D., Smoljani, G., and Jureti, H. (2015). Degradation of methyl orange and Congo red dyes by using TiO2 nanoparticles activated by the solar and the solar-like radiation, J. Environ. Manage., 161, 83–91.
  • Mahmoodi, N. M., Keshavarzi, S., and Ghezelbash, M. (2017). Synthesis of nanoparticle and modelling of its photocatalytic dye degradation ability from colored wastewater, J. Environ. Chem. Eng., 5, 3684–3689.
  • Malato, S., Fernandez-Ibanez, P., Maldonado, M. I., Blanco, J., and Gernjak, W. (2009). Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends, Catal. Today, 147, 1–59.
  • Marwa, B. M., Bruno, S., Mongi, B., Van, F. T., and Abdelmottaleb, B. L. (2016). Modeling of adsorption isotherms of dye N719 on titanium oxide using the grand canonical ensemble in statistical physics for dye sensitized solar cells, Sol. Energy, 135, 177–187.
  • Moradi, M., Ghanbari, F., Manshouri, M., and Angali, K. A. (2016). Photocatalytic degradation of azo dye using nano- ZrO2/UV/Persulfate: Response surface modeling and optimization, Korean J. Chem. Eng., 33, 539–546.
  • Muruganandham, M., and Swaminathan, M. (2006). TiO2-UV photocatalytic oxidation of reactive yellow 14: Effect of operational parameters, J. Hazard. Mater., 135, 78–86.
  • Muruganandham, M., Shobana, N., and Swaminathan, M. (2006). Optimization of solar photocatalytic degradation conditions of reactive yellow 14 azo dye in aqueous TiO2, J. Mol. Catal. A: Chem., 246, 154–161.
  • Natarajan, S., Bajaj, H. C., and Tayade, R. J. (2018). Recent advances based on the synergetic effect of adsorption for removal of dyes from waste water using photocatalytic process, J. Environ. Sci., 65, 201–222.
  • Prigione, V., Tigini, V., Pezzella, C., Anastasi, A., Sannia, G., and Varese, G. C. (2008). Decolourisation and detoxification of textile effluents by fungal biosorption, Water Res., 42, 2911–2920.
  • Sakkas, V. A., Islam, M. A., Stalikas, C., and Albanis, T. A. (2010). Photocatalytic degradation using design of experiments: A review and example of the Congo red degradation, J. Hazard. Mater., 175, 33–44.
  • Senthilkumar, M., and Muthukumar, M. (2007). Studies on the possibility of recycling reactive dye bath effluent after decolouration using ozone, Dyes Pigments, 72, 251–255.
  • Soleymani, A. R., Saien, J., Chin, S., Le, H. A., Park, E., and Jurng, J. (2015). Modeling and optimization of a sono-assisted photocatalytic water treatment process via Central composite design methodology, Process Saf. Environ. Prot., 94, 307–314.
  • Wang, X., Xiao, R., Li, H., and Chen, L. (2017). Quantitative structure-property relationship study of cathode volume changes in lithium ion batteries using ab-initio and partial least squares analysis, J. Materiomics, 3, 178–183.
  • Wong, C. C., and Chu, W. (2003). The hydrogen peroxide-assisted photocatalytic degradation of alachlor in TiO2 suspensions, Environ. Sci. Technol., 37, 2310–2316.
  • Zangeneh, H., Zinatizadeh, A. A. L., Habibi, M., Akia, M., and Isa, M. H. (2015). Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: A comparative review, J. Ind. Eng. Chem., 26, 1–36.
  • Zarei, M., Niaei, A., Salari, D., and Khataee, A. (2010). Application of response surface methodology for optimization of peroxi-coagulation of textile dye solution using carbon nanotube-PTFE cathode, J. Hazard. Mater., 173, 544–551.
  • Zubir, N. A., Yacou, C., Zhang, X., and Costa, J. C. D. D. (2014). Optimisation of graphene oxide–iron oxide nanocomposite in heterogeneous fenton-like oxidation of acid orange 7, J. Environ. Chem. Eng., 2, 1881–1888.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.