567
Views
24
CrossRef citations to date
0
Altmetric
Original Articles

Optimization of the solid-state fermentation conditions and characterization of xylanase produced by Penicillium roqueforti ATCC 10110 using yellow mombin residue (Spondias mombin L.)

, , , , & ORCID Icon

References

  • Aguiar, C. M., and Lucena, S. L. (2011). Produção de celulases por Aspergillus niger e cinética da desativação celulásica, Acta Sci. Technol. 33, 385–391.
  • Ang, S. K., Shaza, E. M., Adibah, Y., Suraini, A. A., and Madihah, M. S. (2013). Production of cellulases and xylanase by Aspergillus fumigatus SK1 using untreated oil palm trunk through solid state fermentation, Process Biochem., 48, 1293–1302.
  • Beg, Q., Kapoor, M., Mahajan, L., and Hoondal, G. S. (2001). Microbial xylanases and their industrial applications: a review. Appl. Micobiol. Biotechnol., 56, 326–338.
  • Camassola, M., and Dillon, A. J. P. (2007). Production of cellulases and hemicellulases by Penicillium echinulatum grown on pretreated sugarcane bagasse and wheat bran on solid state fermentation, J. Appl. Microbiol., 103, 2196–2204.
  • Cavalcante, L. F., de Lima, E. M., de Oliveira Freire, J. L., Pereira, W. E., da Costa, A. D. P. M., and Cavalcante, Í. H. L. (2009). Componentes qualitativos do cajá em sete municípios do brejo paraibano. Acta Sci. Agron., Maringá, 31, 627–632.
  • dos Santos, T. C., Gomes, D. P. P., Bonomo, R. C. F., and Franco, M. (2012). Optimisation of solid state fermentation of potato peel for the production of cellulolytic enzymes, Food Chem., 133, 1299–1304.
  • dos Santos, T. C., Filho, G. A., de Brito, A. R., Pires, A. J. V., Bonomo, R. C. F., and Franco, M. (2016). Production and characterization of cellulolytic enzymes by Aspergillus niger and Rhizopus sp. by solid state fermentation of prickly pear, Rev. Caatinga Caatinga., 29, 222–233.
  • dos Santos, T. C., de Brito, A. R., Bonomo, R. C. F., Pires, A. J. V., Aguiar-Oliveira, E., Silva, T. P., and Franco, M. (2017). Statistical optimization of culture conditions and characterization for ligninolytic enzymes produced from Rhizopus sp. using prickly palm cactus husk, Chem. Eng. Commun., 204, 55–63.
  • dos Santos, T. C., Reis, N. S., Silva, T. P., Bonomo, R. C. F., Aguiar-Oliveira, E., Oliveira, J. R., and Franco, M. (2018). Production, optimisation and partial characterisation of enzymes from filamentous fungi using dried forage cactus pear as substrate, Waste Biomass Valor., 9, 571–570.
  • El-Bakry, M., Abraham, J., Cerda, A., Barrena, R., Ponsá, S., Gea, T., and Sánchez, A. (2015). From wastes to high value added products: novel aspects of SSF in the production of enzymes, Crit. Rev. Environ. Sci. Technol., 45, 1999–2042.
  • Ferraz, J. L. A. A., Souza, L. O., Soares, G. A., Coutinho, J. P., de Oliveira, J. R., Aguiar-Oliveira, E., and Franco, M. (2018). Enzymatic saccharification of lignocellulosic residues using cellulolytic enzyme extract produced by Penicillium roqueforti ATCC 10110 cultivated on residue of yellow mombin fruit, Bioresour. Technol., 248, 214–220.
  • Ferreira, S. L. C., Dos, S. W. N. L., Quintella, C. M., Barros, N., B., and Bosque, S., J. M. (2004). Doehlert matrix: a chemometric tool for analytical chemistry – review, Talanta., 63, 1061–1067.
  • Garai, D., and Kumar, V. (2013). A Box-Behnken design approach for the production of xylanase by aspergillus candidus under solid state fermentation and its application in saccharification of agro residues and parthenium hysterophorus L, Ind. Crops Prod., 44, 352–363.
  • Ghose, T., and Bisaria, V. S. (1987). Measurement of hemicellulase activities. Part 1: Xylanases, Pure Appl. Chem., 591, 739–552.
  • Ghoshal, G., Banerjee, U. C., and Shivhare, U. S. (2015). Utilization of agrowaste and xylanase production in solid state fermentation, J. Biochem. Technol., 6, 1013–1024.
  • Gillot, G., Jany, J. L., Coton, M., Le Floch, G., Debaets, S., Ropars, J., López-Villavicencio, M., Dupont, J., Branca, A., Giraud, T., and Coton, E. (2015). Insights into Penicillium roqueforti morphological and genetic diversity, PloS One, 10, e0129849.
  • Girio, F. M., Fonseca, C., Carvalheiro, F., Duarte, L. C., Marques, S., and Bogel, L., R. (2010). Hemicelluloses for fuel ethanol: A review, Bioresour. Technol., 101, 4775–4800.
  • Govarthanan, M., Selvankumar, T., Selvam, K., Sudhakar, C., Aroulmoji, V., and Kamala-Kannan, S. (2015). Response surface methodology based optimization of keratinase production from alkali-treated feather waste and horn waste using bacillus sp. MG-MASC-BT, J. Ind. Eng. Chem., 27, 25–30.
  • Govarthanan, M., Park, S.-H., Kim, J.-W., Lee, K.-J., Cho, M., Kamala-Kannan, S., and Oh, B.-T. (2014). Statistical optimization of alkaline protease production from brackish environment bacillus sp. SKK11 by SSF using horse gram husk, Prep. Biochem. Biotechnol., 44, 119–131.
  • Goyal, M., Kalra, K. L., Sareen, V. K., and Soni, G. (2008). Xylanase production with xylan rich lignocellulosic wastes by a local soil isolate of Trichoderma viride, Braz. J. Microbiol. Microbiol., 39, 535–541.
  • Heinen, P. R., Henn, C., Peralta, R. M., Bracht, A., Simão, R. D. C .G., da Conceição Silva, J. L., Polizeli, M. L. T., and Kadowaki, M. K. (2014). Xylanase from Fusarium heterosporum: Properties and influence of thiol compounds on xylanase activity. Afr. J. Biotechnol., 13 (9), 1047–1055.
  • Irfan, M., Nadeem, M., and Syed, Q. (2014). One-factor-at-a-time (OFAT) optimization of xylanase production from trichoderma viride -IRO5 in solid state fermentation, J. Radiat. Res. Appl. Sci., 7, 317–326.
  • Kandasamy, S., Muthusamy, G., Balakrishna, S., Duraisamy, S., Seralathan, K. K., and Sudhakar, C. (2016). Optimization of protease production from surface-modified coffee pulp waste and corncobs using Bacillus sp. by SSF. 3 Biotech 6, 167.
  • Kapilan, R., and Arasaratnam, V. (2011). Paddy husk as support for solid state fermentation to produce xylanase from Bacillus pumilus, Rice Sci., 18, 36–45.
  • Kaushik, P., Mishra, A., and Malik, A. (2014). Dual application of agricultural residues for xylanase production and dye removal through solid state fermentation, Int. Biodeterior. Biodegr., 96, 1–8.
  • Khasin, A., Alchanati, I., and Shoham, Y. (1993). Purification and characterization of a thermostable xylanase from Bacillus stearothermophilus T-6, Appl. Environ. Microbiol., 59, 1725–1730.
  • Knob, A., and Carmona, E. C. (2008). Xylanase production by Penicillium sclerotiorum and its characterization, World Appl. Sci. J., 4, 277–283.
  • Knob, A., Beitel, S. M., Fortkamp, D., Terrasan, C. R. F., and Almeida, A. F. D. (2013). Production, purification, and characterization of a major Penicillium glabrum xylanase using brewer’s spent grain as substrate, Biomed Res. Int., 2013, 1–8.
  • Knob, A., and Carmona, E. C. (2010). Purification and characterization of two extracellular xylanases from Penicillium sclerotiorum: a novel acidophilic xylanase, Appl. Biochem. Biotechnol., 162, 429–443.
  • Lafond, M., Tauzin, A., Desseaux, V., Bonnin, E., Ajandouz, E. H., and Giardina, T. (2011). GH10 xylanase D from Penicillium funiculosum: biochemical studies and xylooligosaccharide production. Microb. CellFact, 10, 20.
  • Lee, J.-W., Park, J.-Y., Kwon, M., and Choi, I.-G. (2009). Purification and characterization of a thermostable xylanase from the brown-rot fungus laetiporus sulphureus, J. Biosci. Bioeng., 107, 33–37.
  • Lee, K. C., Arai, T., Ibrahim, D., Prawitwong, P., Deng, L., Murata, Y., Mori, Y., and Kosugi, A. (2015). Purification and characterization of a xylanase from the newly isolated Penicillium rolfsii c3-2(1) IBRL, BioResources 10, 1627–1643.
  • Lineweaver, H., and Burk, D. (1934). The determination of enzyme dissociation constants, J. Am. Chem. Soc., 56, 658–666.
  • Maitan-Alfenas, G. P., Oliveira, M. B., Nagem, R. A. P., Vries, R. P., and Guimarães, V. M. (2016). Characterization and biotechnological application of recombinant xylanases from Aspergillus nidulans, Int. J. Biol. Macromol., 91, 60–67.
  • Mander, P., Cho, S. S., Simkhada, J. R., Choi, Y. H., and Yoo, J. C. (2011). A low molecular weight chymotrypsin-like novel fibrinolytic enzyme from streptomyces sp. CS624, Process Biochem., 46, 1449–1455.
  • Miller, G. L. (1959). Use of dinitrosalicylic as reagent for the determination of reducing sugars, Anal. Chem., 31, 426–428.
  • Mioso, R., Marante, T. F. J., and Laguna, I. H. B. (2015). Penicillium roqueforti: a multifunctional cell factory of high value-added molecules, J. Appl. Microbiol., 118, 781–791.
  • Moreira, L. R. S., Campos, M. C., Siqueira, P. H. V. M., Silva, L. P., Ricart, C. A. O., Martins, P. A., Queiroz, R. M. L., and Ferreira Filho, E. X. (2013). Two β-xylanases from Aspergillus terreus: Characterization and influence of phenolic compounds on xylanase activity, Fungal Genet. Biol., 60, 46–52.
  • Moura, C. L. A., Pinto, G. A. S., and Figueiredo, R. W. (2011). Processamento e utilização da polpa de cajá (Spondias mombin L). Boletim Do Centro de Pesquisa de Processamento de Alimentos 29, 237–252.
  • Murthy, P. S., and Naidu, M. M. (2012). Production and application of xylanase from Penicillium sp. utilizing coffee by-products, Food Bioprocess Technol. Tech., 5, 657–664.
  • Pal, A., and Khanum, F. (2010). Production and extraction optimization of xylanase from Aspergillus niger DFR-5 through solid-state-fermentation, Bioresour. Technol., 101, 7563–7569.
  • Park, Y., Kang, S., Lee, J., Hong, S. L., and Kim, S. (2002). Xylanase production in solid state fermentation by Aspergillus niger mutant using statistical experimental designs, Appl. Microbiol. Biotechnol., 58, 761–766.
  • Pericin, D., Madarev-Popovic, S., Radulovi-Popovic, L., and Skrinjar, M. (2008). Evaluate of pumpkin oil cake as substrate for the cellulase production by Penicillium roqueforti in solid state fermentation, Rom. Biotechnol. Lett., 13, 3815–3820.
  • Querido, A. L. D. S., Coelho, J. L. C., Araújo, E. F. D., and Chaves-Alves, V. M. (2006). Partial purification and characterization of xylanase produced by Penicillium expansum, Braz. Arch. Biol. Technol., 49, 475–480.
  • Selvam, K., Govarthanan, M., Kamala-Kannan, S., Govindharaju, M., Senthilkumar, B., Selvankumar, T., and Sengottaiyan, A. (2014). Process optimization of cellulase production from alkali-treated coffee pulp and pineapple waste using Acinetobacter sp. TSK-MASC, RSC Adv., 4, 13045.
  • Singhania, R. R., Patel, A. K., Soccol, C. R., and Pandey, A. (2009). Recent advances in solid-state fermentation: review, Biochem. Eng. J., 44, 13–18.
  • Terrasan, C. R., Temer, B., Sarto, C., Silva Junior, F. G., and Carmona, E. C. (2013). Xylanase and β-xylosidase from Penicillium janczewskii: production, physico-chemical properties, and application of the crude extract to pulp biobleaching, BioResources, 8, 1292–1305.
  • Terrasan, C. R. F., Guisan, J. M., and Carmona, E. C. (2016). Xylanase and β-xylosidase from Penicillium janczewskii: purification, characterization and hydrolysis of substrates, Electron. J. Biotechnol., 23, 54–62.
  • Valík, L., Baranyi, J., and Görner, F. (1999). Predicting fungal growth: the effect of water activity on Penicillium roqueforti, Int. J. Food Microbiol., 47, 141–146.
  • Vasconcellos, V. M., Tardioli, P. W., Giordano, R. L. C., and Farinas, C. S. (2016). Addition of metal ions to a (hemi)cellulolytic enzymatic cocktail produced in-house improves its activity, thermostability, and efficiency in the saccharification of pretreated sugarcane bagasse, New Biotechnol., 33, 331–337.
  • Wu, S., Liu, B., and Zhang, X. (2006). Characterization of a recombinant thermostable xylanase from deep-sea thermophilic Geobacillus sp. MT-1 in East Pacific, Appl. Microbiol. Biotechnol., 72, 1210–1216.
  • Zhang, H., and Sang, Q. (2015). Production and extraction optimization of xylanase and β-mannanase by Penicillium chrysogenum QML-2 and primary application in saccharification of corn cob, Biochem. Eng. J., 97, 101–110.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.