2,118
Views
139
CrossRef citations to date
0
Altmetric
Original Articles

Photocatalytic degradation of ciprofloxacin antibiotic by TiO2 nanoparticles immobilized on a glass plate

ORCID Icon, ORCID Icon &

References

  • An, T., Yang, H., Li, G., Song, W., Cooper, W. J., and Nie, X. (2010). Kinetics and mechanism of advanced oxidation processes (AOPs) in degradation of ciprofloxacin in water, Appl. Catal. B., 94, 288–294.
  • An, T., Zhang, W., Xiao, X., Sheng, G., Fu, J., and Zhu, X. (2004). Photoelectrocatalytic degradation of quinoline with a novel three-dimensional electrode-packed bed photocatalytic, J. Photoch. Photobio. A., 161, 233–242.
  • Assadi, A., Nateghi, R., Bonyadinejad, G., and Amin, M. (2012). Decolorization of direct poly azo dye with nano photocatalytic UV/NiO process, Int. J. Environ. Health. Eng., 1, 31.
  • American Public Health Association, American Water Works Association, and Water Environment Federation. (1915). Standard Methods for the Examination of Water and Wastewater, Washington, DC: American Public Health Association.
  • Bajpai, S., Chand, N., and Mahendra, M. (2014). The adsorptive removal of a cationic drug from aqueou solution using poly (methacrylic acid) hydrogels, Water SA., 40, 49–56.
  • Behnajady, M. A., and Bimeghdar, S. (2014). Synthesis of mesoporous NiO nanoparticles and their application in the adsorption of Cr (VI), Chem. Eng. J., 239, 105–113.
  • Behnajady, M. A., Modirshahla, N., Mirzamohammady, M., Vahid, B., and Behnajady, B. (2008). Increasing photoactivity of titanium dioxide immobilized on glass plate with optimization of heat attachment method parameters, J. Hazard. Mater., 160, 508–513.
  • Bertelli, M., and Selli, E. (2006). Reaction paths and efficiency of photocatalysis on TiO2 and of H2O2 photolysis in the degradation of 2-chlorophenol, J. Hazard. Mater., 138, 46–52.
  • Chen, X., and Mao, S. S. (2007). Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications, Chem. Rev. Rev., 107, 2891–2959.
  • Darvishi Cheshmeh Soltani, R., Rezaee, A., Safari, M., Khataee, A., and Karimi, B. (2015). Photocatalytic degradation of formaldehyde in aqueous solution using ZnO nanoparticles immobilized on glass plates, Desalin Water. Treat., 53, 1613–1620.
  • Dlamini, L., Krause, R., Kulkarni, G., and Durbach, S. (2011). Photodegradation of bromophenol blue with fluorinated TiO2 composite, Appl. Water Sci., 1, 19–24.
  • Doan, H., and Saidi, M. (2008). Simultaneous removal of metal ions and linear alkylbenzene sulfonate by combined electrochemical and photocatalytic process, J. Hazard. Mater., 158, 557–567.
  • Dursun, A. Y. (2006). A comparative study on determination of the equilibrium, kinetic and thermodynamic parameters of biosorption of copper (II) and lead (II) ions onto pretreated Aspergillus niger, Biochem. Eng. J., 28, 187–195.
  • El-Kemary, M., El-Shamy, H., and El-Mehasseb, I. (2010). Photocatalytic degradation of ciprofloxacin drug in water using ZnO nanoparticles, J. Lumin., 130, 2327–2331.
  • El-Shafey, E.-S. I., Al-Lawati, H., and Al-Sumri, A. S. (2012). Ciprofloxacin adsorption from aqueous solution onto chemically prepared carbon from date palm leaflets, J. Environ. Sci., 24, 1579–1586.
  • Eydivand, S., and Nikazar, M. (2015). Degradation of 1, 2-dichloroethane in simulated wastewater solution: A comprehensive study by photocatalysis using TiO2 and ZnO nanoparticles, Chem. Eng. Commun., 202, 102–111.
  • Fathinia, M., and Khataee, A. (2015). Photocatalytic ozonation of phenazopyridine using TiO2 nanoparticles coated on ceramic plates: mechanistic studies, degradation intermediates and ecotoxicological assessments, Appl. Catal. A., 491, 136–154.
  • Fries, E., Crouzet, C., Michel, C., and Togola, A. (2016). Interactions of ciprofloxacin (CIP), titanium dioxide (TiO2) nanoparticles and natural organic matter (NOM) in aqueous suspensions, Sci. Total. Environ., 563, 971–976.
  • Gharaghani, M. A., and Malakootian, M. (2017). Photocatalytic degradation of the antibiotic ciprofloxacin by ZnO nanoparticles immobilized on a glass plate, Desalin Water Treat., 89, 304–314.
  • Gulnaz, O., Sahmurova, A., and Kama, S. (2011). Removal of reactive red 198 from aqueous solution by potamogeton crispus, Chem. Eng. J., 174, 579–585.
  • Hassani, A., Khataee, A., Fathinia, M., and Karaca, S. (2018). Photocatalytic ozonation of ciprofloxacin from aqueous solution using TiO2/MMT nanocomposite: Nonlinear modeling and optimization of the process via artificial neural network integrated genetic algorithm, Process. Saf. Environ. Prot., 116, 365–376.
  • Hassani, A., Khataee, A., Karaca, S., and Fathinia, M. (2016). Heterogeneous photocatalytic ozonation of ciprofloxacin using synthesized titanium dioxide nanoparticles on a montmorillonite support: Parametric studies, mechanistic analysis and intermediates identification, RSC Adv., 6, 87569–87583.
  • Hassani, A., Khataee, A., Karaca, S., and Fathinia, M. (2017a). Degradation of mixture of three pharmaceuticals by photocatalytic ozonation in the presence of TiO2/montmorillonite nanocomposite: Simultaneous determination and intermediates identification, J. Environ. Chem. Eng., 5, 1964–1976.
  • Hassani, A., Khataee, A., Karaca, S., Karaca, C., and Gholami, P. (2017b). Sonocatalytic degradation of ciprofloxacin using synthesized TiO2 nanoparticles on montmorillonite, Ultrason. Sonochem., 35, 251–262.
  • Hassani, A., Khataee, A., and Karaca, S. (2015). Photocatalytic degradation of ciprofloxacin by synthesized TiO2 nanoparticles on montmorillonite: Effect of operation parameters and artificial neural network modeling, J. Mol. Catal. A – Chem., 409, 149–161.
  • Hosseni, S., Borghei, S., Vossoughi, M., and Taghavinia, N. (2007). Immobilization of TiO2 on perlite granules for photocatalytic degradation of phenol, Appl. Catal. B., 74, 53–62.
  • Janus, M., Kusiak-Nejman, E., and Morawski, A. W. (2011). Determination of the photocatalytic activity of TiO2 with high adsorption capacity, Reac. Kinet. Mech. Cat., 103, 279–288.
  • Kavurmaci, S. S., and Bekbolet, M. (2013). Photocatalytic degradation of humic acid in the presence of montmorillonite, Appl. Clay. Sci., 75, 60–66.
  • Khan, M. M., Ansari, S. A., Pradhan, D., Ansari, M. O., Han, D. H., Lee, J., and Cho, M. H. (2014). Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies, J. Mater. Chem. A., 2, 637–644.
  • Khataee, A., Fathinia, M., and Joo, S. (2013). Simultaneous monitoring of photocatalysis of three pharmaceuticals by immobilized TiO2 nanoparticles: chemometric assessment, intermediates identification and ecotoxicological evaluation, Spectrochim. Acta. A. Mol. Biomol. Spectrosc., 112, 33–45.
  • Khataee, A., and Kasiri, M. B. (2010). Photocatalytic degradation of organic dyes in the presence of nano structured titanium dioxide: influence of the chemical structure of dyes, J. Mol. Catal. A – Chem., 328, 8–26.
  • Khataee, A., Kıranşan, M., Karaca, S., and Sheydaei, M. (2017). Photocatalytic ozonation of metronidazole by synthesized zinc oxide nanoparticles immobilized on montmorillonite, J. Taiwan. Inst. Chem. Eng., 74, 196–204.
  • Khezrianjoo, S., and Revanasiddappa, H. (2012). Langmuir-Hinshelwood kinetic expression for the Photocatalytic degradation of Metanil Yellow aqueous solutions by ZnO catalyst, Chem. Sci. J., 45, 1–7.
  • Khataee, A., Pons, M.-N., and Zahraa, O. (2009). Photocatalytic degradation of three azo dyes using immobilized TiO2 nanoparticles on glass plates activated by UV light irradiation: Influence of dye molecular structure, J. Hazard. Mater., 168, 451–457.
  • Khoshnamvand, N., Ahmadi, S., and Mostafapour, F. K. (2017). Kinetic and isotherm studies on ciprofloxacin an adsorption using magnesium oxide nanopartices, J. Appl. Pharm. Sci., 7, 79–83.
  • Kiziltaş, H., and Tekin, T. (2017). Increasing of photocatalytic performance of TiO2 nanotubes by doping AgS and CdS, Chem. Eng. Commun., 204, 852–857.
  • Koohestani, H., Sadrnezhaad, S. K., and Kheilnejad, A. (2016). Investigation of photocatalytic performance of TiO2 network and fiber geometries, Desal. Water. Treat., 57, 23644–23650.
  • Li, Y., and Kim, S.-J. (2005). Synthesis and characterization of nano titania particles embedded in mesoporous silica with both high photocatalytic activity and adsorption capability, J. Phys. Chem. B B., 109, 12309–12315.
  • Liu, X., Li, X., Zhou, L., Li, S., Sun, J., Wang, Z., Gao, Y., Jiang, Y., Lu, H., Wang, Q., and Dai, J. (2013). Effects of simvastatin-loaded polymeric micelles on human osteoblast-like MG-63 cells, Colloids Surf. B., 102, 420–427.
  • Lu, Z., Zhou, W., Huo, P., Luo, Y., He, M., Pan, J., Li, C., and Yan, Y. (2013). Performance of a novel TiO2 photocatalyst based on the magnetic floating fly-ash cenospheres for the purpose of treating waste by waste, Chem. Eng. J., 225, 34–42.
  • Malakootian, M., Gharaghani, M. A., Dehdarirad, A., Khatami, M., Ahmadian, M., Heidari, M. R., and Mahdizadeh, H. (2019). ZnO nanoparticles immobilized on the surface of stones to study the removal efficiency of 4-nitroaniline by the hybrid advanced oxidation process (UV/ZnO/O3), J. Mol. Struct., 1176, 766–776.
  • Malakootian, M., Jaafarzadeh, N., and Dehdarirad, A. (2016a). Efficiency investigation of photo-Fenton process in removal of sodium dodecyl sulphate from aqueous solutions, Desalin. Water. Treat., 57, 24444–24449.
  • Malakootian, M., Olama, N., Malakootian, M., and Nasiri, A. (2018). Photocatalytic degradation of metronidazole fromaquatic solution by TiO2 -doped Fe3+ nano-photocatalyst, Int. J. Environ. Sci. Technol. (Article in Press).
  • Malakootian, M., and Moridi, A. (2017). Efficiency of electro-Fenton process in removing acid red 18 dye from aqueous solutions, Process. Saf. Environ. Prot., 111, 138–147.
  • Malakootian, M., Pourshaban-Mazandarani, M., Hossaini, H., and Ehrampoush, M. H. (2016b). Preparation and characterization of TiO2 incorporated 13X molecular sieves for photocatalytic removal of acetaminophen from aqueous solutions, Process. Saf. Environ. Prot., 104, 334–345.
  • Mansoury, M., Godini, H., and Shams-Khorramabadi, G. (2015). Photocatalytic removal of natural organic matter from aqueous solutions using zinc oxide nanoparticles immobilized on glass, Iranian Journal of Health and Environment., 8, 181–190.
  • Moradi, O., and Zare, K. (2011). Adsorption of Pb (II), cd (II) and Cu (II) ions in aqueous solution on SWCNTs and SWCNT–COOH surfaces: Kinetics studies, Fuller. Nanotub. Car. N., 19, 628–652.
  • Moussavi, G., Alahabadi, A., Yaghmaeian, K., and Eskandari, M. (2013). Preparation, characterization and adsorption potential of the NH4 Cl-induced activated carbon for the removal of amoxicillin antibiotic from water, Chem. Eng. J., 217, 119–128.
  • Moussavi, G., and Khosravi, R. (2010). Removal of cyanide from wastewater by adsorption onto pistachio hull wastes: Parametric experiments, kinetics and equilibrium analysis, J. Hazard. Mater., 183, 724–730.
  • Naiya, T., Bhattacharya, A., and Das, S. (2008). Removal of cd (II) from aqueous solutions using clarified sludge, J. colloid. Interf. Sci., 325, 48–56.
  • Pang, Y. L., and Abdullah, A. Z. (2013). Effect of carbon and nitrogen co-doping on characteristics and sonocatalytic activity of TiO2 nanotubes catalyst for degradation of rhodamine B in water, Chem. Eng. J., 214, 129–138.
  • Park, J.-Y., Lee, C., Jung, K. W., and Jung, D. (2009). Structure related photocatalytic properties of TiO2, bull, Korean. Chem. Soc., 30, 402–404.
  • Parsa, J. B., Panah, T. M., and Chianeh, F. N. (2016). Removal of ciprofloxacin from aqueous solution by a continuous flow electro-coagulation process, Korean J. Chem. Eng., 33, 893–901.
  • Paul, T., Dodd, M. C., and Strathmann, T. J. (2010). Photolytic and photocatalytic decomposition of aqueous ciprofloxacin: Transformation products and residual antibacterial activity, Water. Res., 44, 3121–3132.
  • Peralta-Videa, J. R., Zhao, L., Lopez-Moreno, M. L., de la Rosa, G., Hong, J., and Gardea-Torresdey, J. L. (2011). Nanomaterials and the environment: A review for the biennium 2008–2010, J. Hazard. Mater., 186, 1–15.
  • Pimentel, P., Melo, M., Melo, D., Assunçao, A., Henrique, D., Silva, C., and González, G. (2008). Kinetics and thermodynamics of Cu (II) adsorption on oil shale wastes, Fuel. Process. Technol., 89, 62–67.
  • Rahimi, S., Poormohammadi, A., Salmani, B., Ahmadian, M., and Rezaei, M. (2016). Comparing the photocatalytic process efficiency using batch and tubular reactors in removal of methylene blue dye and COD from simulated textile wastewater, J. Water Reuse Desal., 6, 574–582.
  • Shetty, R., Chavan, V. B., Kulkarni, P. S., Kulkarni, B. D., and Kamble, S. P. (2017). Photocatalytic degradation of pharmaceuticals pollutants using N-doped TiO2 photocatalyst: Identification of CFX degradation intermediates, Indian. Chem. Eng., 59, 177–199.
  • Shi, Z., Yao, S., and Sui, C. (2011). Application of fly ash supported titanium dioxide for phenol photodegradation in aqueous solution, Catal. Sci. Technol. Technol., 1, 817–822.
  • Subash, B., Krishnakumar, B., Swaminathan, M., and Shanthi, M. (2013). Highly efficient, solar active, and reusable photocatalyst: Zr-loaded Ag–ZnO for reactive red 120 dye degradation with synergistic effect and dye-sensitized mechanism, Langmuir., 29, 939–949.
  • Uğurlu, M. (2009). Adsorption of a textile dye onto activated sepiolite, Microporous. Mesoporous. Mater., 119, 276–283.
  • Van Doorslaer, X., Demeestere, K., Heynderickx, P. M., Van Langenhove, H., and Dewulf, J. (2011). UV-A and UV-C induced photolytic and photocatalytic degradation of aqueous ciprofloxacin and moxifloxacin: Reaction kinetics and role of adsorption, Appl. Catal. B – Environ., 101, 540–547.
  • Vidal, A., Dı́az, A. I., El Hraiki, A., Romero, M., Muguruza, I., Senhaji, F., and González, J. (1999). Solar photocatalysis for detoxification and disinfection of contaminated water: Pilot plant studies, Catal. Today., 54, 283–290.
  • Wu, S., Zhao, X., Li, Y., Zhao, C., Du, Q., Sun, J., Wang, Y., Peng, X., Xia, Y., Wang, Z., and Xia, L. (2013). Adsorption of ciprofloxacin onto biocomposite fibers of graphene oxide/calcium alginate, Chem. Eng. J., 230, 389–395.
  • Yoosefian, M., Ahmadzadeh, S., Aghasi, M., and Dolatabadi, M. (2017). Optimization of electrocoagulation process for efficient removal of ciprofloxacin antibiotic using iron electrode; kinetic and isotherm studies of adsorption, J. Mol. Liq., 225, 544–553.
  • Zhu, H.-Y., Xiao, L., Jiang, R., Zeng, G.-M., and Liu, L. (2011). Efficient decolorization of azo dye solution by visible light-induced photocatalytic process using SnO2/ZnO heterojunction immobilized in chitosan matrix, Chem. Eng. J., 172, 746–753.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.