1,035
Views
35
CrossRef citations to date
0
Altmetric
Review Article

Recent developments in purification techniques and industrial applications for whey valorization: A review

, , , &

References

  • Agarwal, S., Beausire, R. L. W., Patel, S., and Patel, H. (2015). Innovative uses of milk protein concentrates in product development, J. Food Sci., 80, A23–A29.
  • Aguero, R., Bringas, E., Román, M. F. S., Ortiz, I., and Ibañez, R. (2017). Membrane processes for whey proteins separation and purification: A review. Curr. Org. Chem., 21, 1740–1752.
  • Almécija, M. C., Ibáñez, R., Guadix, A., and Guadix, E. M. (2007). Effect of pH on the fractionation of whey proteins with a ceramic ultrafiltration membrane, J. Membr. Sci., 288, 28–35.
  • Alomirah, H. F., and Alli, I. (2004). Separation and characterization of β-lactoglobulin and α-lactalbumin from whey and whey protein preparations, Int. Dairy J., 14, 411–419.
  • Arunkumar, A., and Etzel, M. R. (2014). Fractionation of α-lactalbumin and β-lactoglobulin from bovine milk serum using staged, positively charged, tangential flow ultrafiltration membranes, J. Membr. Sci., 454, 488–495.
  • Atasever, A., Ozdemir, H., Gulcin, I., and Kufrevioglu, O. I. (2013). One-step purification of lactoperoxidase from bovine milk by affinity chromatography, Food Chem., 136, 864–870.
  • Atra, R., Vatai, G., Bekassy-Molnar, E., and Balint, A. (2005). Investigation of ultra-and nanofiltration for utilization of whey protein and lactose, J. Food Eng., 67, 325–332.
  • Baieli, M. F., Urtasun, N., Martinez, M. J., Hirsch, D. B., Pilosof, A. M. R., Miranda, M. V., Cascone, O., and Wolman, F. J. (2017). Affinity chromatography matrices for depletion and purification of casein glycomacropeptide from bovine whey, Biotechnol. Prog., 33, 171–180.
  • Baieli, M. F., Urtasun, N., Miranda, M. V., Cascone, O., and Wolman, F. J. (2014). Isolation of lactoferrin from whey by dye-affinity chromatography with yellow HE-4R attached to chitosan mini-spheres, Int. Dairy J., 39, 53–59.
  • Baldasso, C., Barros, T. C., and Tessaro, I. C. (2011). Concentration and purification of whey proteins by ultrafiltration, Desalination, 278, 381–386.
  • Baldissera, A. C., Della Betta, F., Penna, A. L. B., and Lindner, J. D. (2011). Functional foods: A new frontier for developing whey-based protein beverages, Sem. Ci. Agr., 32, 1497–1511.
  • Bazinet, L., Ippersiel, D., and Mahdavi, B. (2004). Fractionation of whey proteins by bipolar membrane electroacidification, Innov. Food Sci. Emerg. Technol., 5, 17–25.
  • Besselink, T., Janssen, A. E. M., and Boom, R. M. (2015). Isolation of bovine serum albumin from whey using affinity chromatography, Int. Dairy J., 41, 32–37.
  • Bhattacharjee, S., Bhattacharjee, C., and Datta, S. (2006). Studies on the fractionation of β-lactoglobulin from casein whey using ultrafiltration and ion-exchange membrane chromatography, J. Membr. Sci., 275, 141–150.
  • Camargo, L. R., Silva, L. M., Komeroski, M. R., Kist, T. B. L., Rodrigues, C. E., Silva, M. M, R., Doneda, D., Schmidt, O. H., and Oliveira, V. R. (2018). Effect of whey protein addition on the nutritional, technological and sensory quality of banana cake, Int. J. Food Sci. Technol.
  • Chavan, R. S., Shraddha, R. C., Kumar, A., and Nalawade, T. (2015). Whey based beverage: Its functionality, formulations, health benefits and applications, J. Food Process. Technol., 6, 1–2.
  • Cheang, B., and Zydney, A. L. (2004). A two-stage ultrafiltration process for fractionation of whey protein isolate, J. Membr. Sci., 231, 159–167.
  • Chiu, T. Y. (2013). Electrically assisted microfiltration of whey suspensions using non-circular multichannel ceramic membranes, Separat. Sci. Technol., 48, 84–92.
  • Danesh, E., Goudarzi, M., and Jooyandeh, H. (2018). Transglutaminase-mediated incorporation of whey protein as fat replacer into the formulation of reduced-fat Iranian white cheese: Physicochemical, rheological and microstructural characterization, J. Food Measure. Charact., 29, 8892.
  • Daw, E., and Hartel, R. W. (2015). Fat destabilization and melt-down of ice creams with increased protein content, Int. Dairy J., 43, 33–41.
  • de Moura Bell, J. M. L. N., Cohen, J. L., de Aquino, L. F. M. C., Lee, H., de Melo Silva, V. L., Liu, Y., Domizio, P., and Barile, D. (2018). An integrated bioprocess to recover bovine milk oligosaccharides from colostrum whey permeate, J. Food Eng., 216, 27–35.
  • de Souza, R. R., Bergamasco, R., da Costa, S. C., Feng, X., Faria, S. H. B., and Gimenes, M. L. (2010). Recovery and purification of lactose from whey, Chem. Eng. Process., 49, 1137–1143.
  • Dong, S., Chen, L., Dai, B., Johnson, W., Ye, J., Shen, S., and Yao, S. J. (2013). Isolation of immunoglobulin G from bovine milk whey by poly (hydroxyethyl methacrylate) based anion exchange cryogel, J. Sep. Sci., 36, 2387–2393.
  • Doultani, S., Turhan, K. N., and Etzel, M. R. (2004). Fractionation of proteins from whey using cation exchange chromatography, Process Biochem., 39, 1737–1743.
  • Du, P., Du, J., and Smyth, H. D. C. (2017). Evaluation of granulated lactose as a carrier for dry powder inhaler formulations 2: Effect of drugs and drug loading, J. Pharm. Sci., 106, 366–376.
  • Du, Q. Y., Lin, D. Q., Xiong, Z. S., and Yao, S. J. (2013). One-step purification of lactoferrin from crude sweet whey using cation-exchange expanded bed adsorption, Ind. Eng. Chem. Res. 52, 2693–2699.
  • Ellander, A., Harika, R. K., and Zock, P. L. (2015). Intake and sources of dietary fatty acids in Europe: Are current population intakes of fats aligned with dietary recommendations? Eur. J. Lipid Sci. Technol., 117, 1370–1377.
  • El-Sayed, M. M., and Chase, H. A. (2011). Trends in whey protein fractionation, Biotechnol. Lett., 33, 1501–1511.
  • El-Sayed, M. M., and Chase, H. A. (2010a). Purification of the two major proteins from whey concentrate using a cation exchange selective adsorption process, Biotechnol. Progress, 26, 192–199.
  • El-Sayed, M. M., and Chase, H. A. (2010). Simulation of the breakthrough curves for the adsorption of α-lactalbumin and β-lactoglobulin to SP sepharose FF cation-exchanger, Biochem. Eng. J. 49, 221–228.
  • Farrell, H. M., Jimenez-Flores, R., Bleck, G. T., Brown, E. M., Butler, J. E., Creamer, L. K., Hicks, C. L., Hollar, C. M., Ng-Kwai-Hang, K. F., and Swaisgood, H. E. (2004). Nomenclature of the proteins of cows’ milk-sixth revision, J. Dairy Sci., 87, 1641–1674.
  • Galier, S., and Balmann, H. R. (2011). The electrophoretic membrane contactor: A mass-transfer-based methodology applied to the separation of whey proteins, Separ. Purific. Technol., 77, 237–244.
  • Goodall, S., Grandison, A. S., Jauregi, P. J., and Price, J. (2008). Selective separation of the major whey proteins using ion exchange membranes, J. Dairy Sci., 91, 1–10.
  • Gurgel, P. V., Carbonell, R. G., and Swaisgood, H. E. (2000). Fractionation of whey proteins with a hexapeptide ligand affinity resin, Bioseparation 9, 385–392.
  • Gyawali, R., and Ibrahim, S. A. (2018). Addition of pectin and whey protein concentrate minimises the generation of acid whey in Greek-style yogurt, J. Dairy Res., 85, 238–242.
  • Holzmüller, W., and Kulozik, U. (2016). Isolation of milk fat globule membrane (MFGM) material by coagulation and diafiltration of buttermilk, Int. Dairy J., 63, 88–91.
  • Jain, S., Gupta, R., and Jain, S. (2013). Development of low cost nutritional beverage from whey, Iosr-Jestft. Technol., 5, 73–88.
  • Jawaldeh, A., and Al-Jawaldeh, H. (2018). Fat intake reduction strategies among children and adults to eliminate obesity and non-communicable diseases in the Eastern Mediterranean region, Children 5, 89.
  • Jovanović, S., Barać, M., and Maćej, O. (2005). Whey proteins-properties and possibility of application, Mljekarstvo 55, 215–233.
  • Kankanamge, R., Jeewanthi, R., Lee, N., and Paik, H. (2015). Improved functional characteristics of whey protein hydrolysates in food industry, Kor. J. Food Sci. Anim. Resources, 35, 350–359.
  • Kehinde, B. A., and Sharma, P. (2018). Recently isolated antidiabetic hydrolysates and peptides from multiple food sources: A review, Crit. Rev. Food Sci. Nutrit., 1–19.
  • Keri, M. N. D. (2004). Therapeutic applications of whey protein, Alt. Med. Rev., 9, 136–156.
  • Konrad, G., and Kleinschmidt, T. (2008). A new method for isolation of native α-lactalbumin from sweet whey, Int. Dairy J., 18, 47–54.
  • Królczyk, B. J., Dawidziuk, T., Janiszewska-Turak, E., and Solowiej, B. (2016). Use of whey and whey preparations in the food industry - A review, Polish J. Food Nutrit. Sci., 66, 3.
  • Levin, M. A., Burrington, K. J., and Hartel, R. W. (2016). Whey protein phospholipid concentrate and delactosed permeate: Applications in caramel, ice cream, and cake, J. Dairy Sci., 99, 6948–6960.
  • Liu, J., Tu, Z., Shao, Y., Wang, H., Liu, G., Sha, X., Zhang, L., and Yang, P. (2017). Improved antioxidant activity and glycation of α-lactalbumin after ultrasonic pretreatment revealed by high-resolution mass spectrometry, J. Agric. Food Chem., 65, 10317–10324.
  • Liu, Y., Zhao, X., Liu, M., and Zhao, J. (2018). Cheese manufacturing and bioactive substance separation: Separation and preliminary purification of camp from whey, Korean J. Food Sci. Anim. Resources, 38, 52–63.
  • Lv, L., Fu, C., Zhang, F., and Wang, S. (2018). Thermally-induced whey protein isolate-daidzein co-assemblies: Protein-based nanocomplexes as an inhibitor of precipitation/crystallization for hydrophobic drug, Food Chem., 66, 4208–4218.
  • Meyer, A., Berensmeier, S., and Franzreb, M. (2007). Direct capture of lactoferrin from whey using magnetic micro-ion exchangers in combination with high-gradient magnetic separation, React. Funct. Polym., 67, 1577–1588.
  • Muller, A., Chaufer, B., Merin, U., and Daufin, G. (2003). Purification of alpha-lactalbumin from a prepurified acid whey: Ultrafiltration or precipitation, Lait, 83, 439–451.
  • Muller, A., Daufin, G., and Chaufer, B. (1999). Ultrafiltration modes of operation for the separation of α-lactalbumin from acid casein whey, J. Membr. Sci., 153, 9–21.
  • Nakano, T., Ozimek, L., and Betti, M. (2018). Separation of bovine κ-casein glycomacropeptide from sweet whey protein products with undetectable level of phenylalanine by protein precipitation followed by anion exchange chromatography, J. Dairy Res., 85, 110–113.
  • Naqvi, Z., Khan, R. H., and Saleemuddin, M. A. (2010). Procedure for the purification of beta-lactoglobulin from bovine milk using gel filtration chromatography at low pH, Prepar. Biochem. Biotechnol., 40, 326–336.
  • Ndiaye, N., Pouliot, Y., Saucier, L., Beaulieu, L., and Bazinet, L. (2010). Electroseparation of bovine lactoferrin from model and whey solutions, Separ. Purificat. Technol., 74, 93–99.
  • Olabi, A., Jinjarak, S., Jiménez-Flores, R., Walker, J. H., and Daroub, H. (2015). Compositional and sensory differences of products of sweet-cream and whey buttermilk produced by microfiltration, diafiltration, and supercritical CO2, J. Dairy Sci., 98, 3590–3598.
  • Ounis, W. B., Gauthierm, S. F., Turgeon, S. L., Roufik, S., and Pouliot, Y. (2008). Separation of minor protein components from whey protein isolates by heparin affinity chromatography, Int. Dairy J., 18, 1043–1050.
  • Owonubi, S. J., Aderibigbe, B. A., Mukwevho, E., Sadiku, E. R., and Ray, S. S. (2018). Characterization and in vitro release kinetics of antimalarials from whey protein-based hydrogel biocomposites, Int. J. Ind. Chem., 9, 39–52.
  • Pacáková, V. (2009). Chromatography in biochemistry. Institute of Medical Biochemistry, Faculty of Natural Sciences, Charles University, Prague.
  • Pan, M., Shen, S., Chen, L., Dai, B., Xu, L., Yun, J., Yao, K., Lin, D.-Q., and Yao, S.-J. (2015). Separation of lactoperoxidase from bovine whey milk by cation exchange composite cryogel embedded macroporous cellulose beads, Separ. Purific. Technol., 147, 132–138.
  • Pate, S. A., and Parikh, S. C. (2016). Production of lactic acid from whey by lactobacillus sp. isolated from local dairy products, Int. J. Curr. Microbiol. Appl. Sci., 5, 734–741.
  • Patel, S. (2015). Emerging trends in nutraceutical applications of whey protein and its derivatives, J. Food Sci. Technol., 52, 6847–6858.
  • Pedersen, L., Mollerup, J., Hansen, E., and Jungbauer, A. (2003). Whey proteins as a model system for chromatographic separation of proteins, J. Chromatogr. B, 790, 161–173.
  • Puerta, Á., Jaulmes, A., De Frutos, M., Diez-Masa, J. C., and Vidal-Madjar, C. (2002). Adsorption kinetics of β-lactoglobulin on a polyclonal immunochromatographic support, J. Chromatogr., 95, 30.
  • Quintieri, L., Monaci, L., Baruzzi, F., Giuffrida, M. G., de Candia, S., and Caputo, L. (2017). Reduction of whey protein concentrate antigenicity by using a combined enzymatic digestion and ultrafiltration approach, J. Food Sci. Technol. 54, 1910–1916.
  • Rathour, A. K., Rathore, V., Mehta, B. M., Patel, S. M., Chauhan, A., and Aparnathi, K. D. (2017). Standardization and storage study of whey protein concentrate (wpc-70) prepared from buffalo milk using ultrafiltration membrane technology, J. Food Process. Preserv., 41, e12882.
  • Ratnayake, W. S., Geera, B., and Rybak, D. A. (2012). Effects of egg and egg replacers on yellow cake product quality, J. Food Process. Preserv., 36, 21–29.
  • Riera, F., González, P., and Muro, C. (2016). Whey cheese: Membrane technology to increase yields, J. Dairy Res., 83, 96–103.
  • Rosa, L., Cutone, A., Lepanto, M., Paesano, R., and Valenti, P. (2017). Lactoferrin: A natural glycoprotein involved in iron and inflammatory homeostasis, IJMS Sci., 18, 1985.
  • Santos, M. J., Teixeira, J. A., and Rodrigues, L. R. (2012). Fractionation of the major whey proteins and isolation of β-Lactoglobulin variants by anion exchange chromatography, Separ. Purific. Technol., 90, 133–139.
  • Saufi, S. M., and Fee, C. J. (2013). Mixed matrix membrane chromatography based on hydrophobic interaction for whey protein fractionation, J. Membr. Sci., 444, 157–163.
  • Schlatterer, B., Baeker, R., and Schlatterer, K. (2004). Improved purification of β-lactoglobulin from acid whey by means of ceramic hydroxyapatite chromatography with sodium fluoride as a displacer, J. Chromatogr., 807, 223–228.
  • Selkirk, C. (2004). Ion-exchange chromatography. In Methods in Molecular Biology: Protein Purification Protocols, ed. Cutler, P., 125–131, Humana Press, Totowa, NJ.
  • Sharma, P., Trivedi, N., and Gat, Y. (2017). Development of functional fermented whey–oat-based product using probiotic bacteria, 3 Biotech., 7, 272.
  • Sill, C., Biehl, R., Hoffmann, B., Radulescu, A., Appavou, M.-S., Farago, B., Merkel, R., and Richter, D. (2016). Structure and domain dynamics of human lactoferrin in solution and the influence of Fe(III)-ion ligand binding, BMC Biophys., 9, 7.
  • Singh, R., Farhaan, B., and Divya, S. (2014). Development and quality evaluation and shelf life studies of whey guava beverage, Int. J. Curr. Eng. Technol., 4, 2171–2175.
  • Sinha, R., Radha, C., Prakash, J., and Kaul, P. (2007). Whey protein hydrolysate: Functional properties, nutritional quality and utilization in beverage formulation, Food Chem., 101, 1484–1491.
  • Sluková, M., Hinková, A., Henke, S., Smrž, F., Lukačíková, M., Pour, V., and Bubník, Z. (2016). Cheese whey treated by membrane separation as a valuable ingredient for barley sourdough preparation, J. Food Eng., 172, 38–47.
  • Sousa, G. T., Lira, F. S., Rosa, J. C., de Oliveira, E. P., Oyama, L. M., Santos, R. V., and Pimentel, G. D. (2012). Dietary whey protein lessens several risk factors for metabolic diseases: A review, Lipids Health Dis., 11, 67–68.
  • Teepakorn, C., Fiaty, K., and Charcosset, C. (2015). Optimization of lactoferrin and bovine serum albumin separation using ion-exchange membrane chromatography, Separ. Purific. Technol., 151, 292–302.
  • Torres, I. C., Amigo, J. M., Knudsen, J. C., Tolkach, A., Mikkelsen, B. Ø., and Ipsen, R. (2018). Rheology and microstructure of low-fat yoghurt produced with whey protein microparticles as fat replacer, Int. Dairy J., 81, 62–71.
  • Tsakali, E., Petrotos, K., D’Allessandro, A., and Goulas, P. (2010). A review on whey composition and the methods used for its utilization for food and pharmaceutical products. 6th International conference on simulation and modelling in the food and bio-industry.
  • Urtasun, N., Baieli, M. F., Hirsch, D. B., Martínez-Ceron, M. C., Cascone, O., and Wolman, F. J. (2017). Lactoperoxidase purification from whey by using dye affinity chromatography, Food Bioprod. Process., 103, 58–65.
  • Valiño, V., San Román, M. F., Ibañez, R., and Ortiz, I. (2014). Improved separation of bovine serum albumin and lactoferrin mixtures using charged ultrafiltration membranes, Separ. Purific. Technol., 125, 163–169.
  • Voswinkel, L., and Kulozik, U. (2014). Fractionation of all major and minor whey proteins with radial flow membrane adsorption chromatography at lab and pilot scale, Int. Dairy J., 39, 209–214.
  • Vyas, H. K., Izco, J. M., and Jimenez-Flores, R. (2002). Scale-up of native β-lactoglobulin affinity separation process, J. Dairy Sci., 85, 1639–1645.
  • Webb, P., Caiafa, K., and Walton, S. (2017). Making food aid fit-for-purpose in the 21st century: A review of recent initiatives improving the nutritional quality of foods used in emergency and development programming, Food Nutr. Bull., 38, 574–584.
  • Wen-Qiong, W., Lan-Wei, Z., Xue, H., and Yi, L. (2017). Cheese whey protein recovery by ultrafiltration through transglutaminase (TG) catalysis whey protein cross-linking, Food Chem., 215, 31–40.
  • Wolman, F. J., Maglio, D. G., Grasselli, M., and Cascone, O. (2007). One-step lactoferrin purification from bovine whey and colostrum by affinity membrane chromatography, J. Membr. Sci., 288, 132–138.
  • Zhang, T., McCarthy, J., Wang, G. R., Liu, Y. Y., and Guo, M. R. (2015). Physiochemical properties, microstructure, and probiotic survivability of non-fat goats’ milk yogurt using heat-treated whey protein concentrate as fat replacer, J. Food Sci., 80, M788–M794.
  • Zhang, R., Zhang, Y., Wu, Y., Liu, J., Ye, T., and Wang, S. (2018). Succinylated whey protein isolate as a sustained-release excipient of puerarin derivative oral tablets: Preparation, optimization and pharmacokinetics, Asian J. Pharm. Sci., 13, 383–394.
  • Zumbusch, P., Kulcke, W., and Brunner, G. (1998). Use of alternating electrical fields as anti-fouling strategy in ultrafiltration of biological suspensions-introduction of a new experimental procedure for crossflow filtration, J. Membr. Sci., 142, 75–86.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.