300
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Catalytic CO2-MEA absorptions with the aid of CaCO3, MgCO3, and BaCO3 in the batch and semi-batch processes

ORCID Icon, , , &

References

  • Astarita, G., Savage, D. W., and Longo, J. M. (1981). Promotion of CO2 mass transfer in carbonate solutions, Chem. Eng. Sci., 36, 581–588.
  • Aboudheir, A., Tontiwachwuthikul, P., Chakma, A., and Idem, R. (2003). Kinetics of the reactive absorption of carbon dioxide in high CO2-loaded, concentrated aqueous monoethanolamine solutions, Chem. Eng. Sci., 58, 5195–5210.
  • Caplow, M. (1968). Kinetics of carbamate formation and breakdown, J. Am. Chem. Soc., 90, 6795–6803.
  • Crooks, E. J., and Donnellan, P. J. (1989). Kinetics and mechanism of the reaction between carbon dioxide and amines in aqueous solutions, J. Chem. Soc., 2, 331–333.
  • Donaldon, L. T., and Nguyen, N. Y. (1980). Carbon dioxide reaction kinetics and transport in aqueous amine membranes, Ind. Eng. Chem. Fundam. 10, 260–266.
  • Danckwerts, P. V. (1981). Promotions of CO2 mass-transfer in carbonate solutions, Chem. Eng. Sci., 36, 1741–1742.
  • Davidson, R. M. (2007). Post-Combustion Carbon Capture from Coal Fired Plants – Solvent Scrubbing, IEA Clean Coal Centre, CCC/125, Putney, London.
  • Guo, D., Thee, H., da Silva, G., Chen, J., Fei, W., Kentish, S., and Stevens, G. W. (2011). Borate-catalyzed carbon dioxide hydration via the carbonic anhydrase mechanism, Environ. Sci. Technol., 45, 4802–4807.
  • Guo, Y., Zhao, C., and Li, D. (2015). CO2 adsorption kinetics of K2CO3/activated carbon for low‐concentration CO2 removal from confined spaces, Chem. Eng. Technol., 38, 891–899.
  • Guo, Y., Li, C., Lu, S., and Zhao, C. (2017). Efficacious means for inhibiting the deactivation of K2CO3/AC for low-concentration CO2 removal in the presence of SO2 and NO2, Chem. Eng. J., 308, 516–526.
  • Horwitz, W. (1975). Association of Official Analytical Chemists (AOAC) Methods, 12th ed., George Bant, Gaithersburg, MD.
  • Idem, R., Shi, H., Gelowitz, D., and Tontiwachwuthikul, P. (2013). Catalytic method and apparatus for separating a gaseous component from an incoming gas stream. US Patent 2013/0108532 A1.
  • Idem, R., Supap, T., Shi, H., Gelowitz, D., Ball, M., Campbell, C., and Tontiwachwuthikul, P. (2015). Practical experience in post-combustion CO2 capture using reactive solvents in large pilot and demonstration plants, Int. J. Greenhouse Gas Control, 40, 6–25.
  • Liang, Z., Rongwong, W., Liu, H., Fu, K., Gao, H., Cao, F., Zhang, R., Sema, T., Henni, A., Sumon, K., Nath, D., Gelowitz, D., Srisang, W., Saiwan, C., Benamor, A., Al-Marri, M., Shi, H., Supap, T., Chan, C., Zhou, Q., Abu-Zahra, M., Wilson, M., Olson, W., Idem, R., and Tontiwachwuthikul, P. (2015). Recent progress and new developments in post-combustion carbon-capture technology with amine based solvents, Int. J. Greenhouse Gas Control, 40, 26–54.
  • Liang, Z. W., Idem, R., Tontiwachwuthikul, P., Yu, F., Liu, H., and Rongwong, W. (2016). Experimental study on the solvent regeneration of a CO2-loaded MEA solution using single and hybrid solid acid catalysts, AIChE J., 62, 753–765.
  • Liu, H., Zhang, X., Gao, H., Liang, Z., Idem, R., and Tontiwachwuthikul, P. (2017). Investigation of CO2 regeneration in single and blended amine solvents with and without catalyst, Ind. Eng. Chem. Res., 56, 7656–7664.
  • Levenspiel, O. (1999). Chemical Reactor Engineering, 3rd ed., John Wiley & Sons, Danvers, MA.
  • Lee, C. S., Choi, Y. B., Lee, J. T., Ryu, K. C., Ahn, S. Y., and Kim, C. J. (2006). CO2 absorption and regeneration of alkali metal-based solid sorbents, Catal. Today, 111, 385–390.
  • Narisfar, K., and Tafazzol, A. H. (2010). Vapor-liquid equilibria of acid gas-aqueous ethanolamine solutions using the PC-SAFT equation of state, Ind. Eng. Chem. Res., 49, 7620–7630.
  • Narku-Tetteh, J., Muchan, P., Saiwan, C., Supap, T., and Idem, R. (2017). Selection of components for formulation of amine blends for post combustion CO2 capture based on side chain structure of primary, secondary and tertiary amines, Chem. Eng. Sci., 170, 542–560.
  • Narku-Tetteh, J., Afari, D. B., Coker, J., and Idem, R. (2018). Evaluation of the roles of absorber and desorber catalysts in the heat duty and heat of CO2 desorption from butylethanolamine-2 amino-2-methyl-1-propanol and monoethanolamine-methyldiethanolamine solvent blends in a bench-scale CO2 capture pilot plant, Energy Fuels, 32, 9711–9726.
  • Pires, J. C. M., Martins, F. G., Alvim-Ferraz, M. C. M., and Simões, M. (2011). Recent developments on carbon capture and storage: An overview, Chem. Eng. Res. Des., 89, 1446–1460.
  • Phan, D. T., Maeder, M., Burns, R. C., and Puxty, G. (2014). Catalysis of CO2 absorption in aqueous solution by inorganic oxoanions and their application to post combustion capture, Environ. Sci. Technol., 48, 4623–4629.
  • Rao, A. B., Rubin, E. S., and Berkenpas, M. B. (2004). An Integrated Modelling Framework for Carbon Management Technologies, Carnegie Mellon University, Pittsburgh, PA.
  • Rayer, A. V., Sumon, K. Z., Sema, T., Henni, A., Idem, R., and Tontiwachwuthikul, P. (2012). Part 5c: Solvent chemistry: Solubility of CO2 in reactive solvents for post combustion CO2, Carbon Manage., 3, 467–484.
  • Rochelle, G. T. (2009). Amine scrubbing for CO2 capture, Science, 325, 1652–1654.
  • Sakwattanapong, R., Aroonwilas, A., and Veawab, A. (2005). Behavior of reboiler heat duty for CO2 capture plants using regenerable single and blended alkanoamines, Ind. Eng. Chem. Res., 44, 4465–4473.
  • Sema, T., Naami, A., Liang, Z., Shi, H., Rayer, V. A., Sumon, Z. K., Wattanaphan, P., Henni, A., Idem, R., Saiwan, C., and Tontiwachwuthikul, P. (2012). Part 5b: Solvent chemistry: Reaction kinetics of CO2 absorption into reactive amine solutions, Carbon Manage., 3, 201–220.
  • Service, R. F. (2010). Chemistry. Catalyst offers new hope for capturing CO2 on the cheap, Science, 327, 257.
  • Shi, H., Liang, Z., Sema, T., Naami, A., Usubharatana, P., Saiwan, C., Idem, R., and Tontiwachwuthikul, P. (2012). Part 5a: Solvent chemistry: NMR analysis and studies for amine − CO2−H2O systems with vapor − liquid equilibrium modeling for CO2 capture processes, Carbon Manage., 3, 185–200.
  • Shi, H., Naami, A., Idem, R., and Tontiwachwuthikul, P. (2014). Catalytic and non-catalytic solvent regeneration during absorption-based CO2 capture with single and blended reactive amine solvents, Int. J. Greenhouse Gas Control, 26, 39–50.
  • Shi, H., Zhou, Y., Zuo, Y., Cui, L., Idem, R., and Tontiwachwuthikul, P. (2017). Heterogeneous catalysis of CO2-diethanolamine absorption with MgCO3 and CaCO3 and comparing to non-catalytic CO2-monoethanolamine interactions, React. Kinet. Mech. Catal., 122, 539–555.
  • Vaidya, P. D., and Kenig, E. Y. (2007). CO2-alkanolamine reaction kinetics: A review of recent studies, Chem. Eng. Technol., 30, 1467–1474.
  • Wang, M., Lawal, A., Stephenson, P., Sidders, J., and Ramshaw, C. (2011). Post-combustion CO2 capture with chemical absorption: A state of the art review, Chem. Eng. Res. Des., 89, 1609–1624.
  • Xie, H., Zhou, Y., Zhang, Y., and Johnson, J. K. (2010). Reaction mechanism of monoethanolamine with CO2, in aqueous solution from molecular modeling, J. Phys. Chem. A, 114, 11844–11852.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.