602
Views
29
CrossRef citations to date
0
Altmetric
Original Articles

Green synthesis of reduced graphene oxide-AgAu bimetallic nanocomposite: Catalytic performance

, , , &

References

  • Babu, S. G., Gopiraman, M., Deng, D., Wei, K., Karvembu, R., and Kim, I. S. (2016). Robust Au-Ag/graphene bimetallic nanocatalyst for multifunctional activity with high synergism, Chem. Eng. J., 300, 146–159. doi:10.1016/j.cej.2016.04.101
  • Chen, H., Jiang, G. H., Li, L., Liu, Y. K., Huang, Q., Jiang, T. T., and Du, X. X. (2015). Facile fabrication of highly flexible graphene paper for photocatalytic reduction of 4-nitrophenol, Bull. Mater. Sci., 38, 1457–1463. doi:10.1007/s12034-015-1037-2
  • Chu, H. J., Lee, C. Y., and Tai, N. H. (2014). Green reduction of graphene oxide by Hibiscus sabdariffa L. to fabricate flexible graphene electrode, Carbon NY, 80, 725–733. doi:10.1016/j.carbon.2014.09.019
  • Chu, H., Lee, C., and Tai, N. (2016). Green preparation using black soybeans extract for graphene-based porous electrodes and their applications in supercapacitors, J. Power Sources, 322, 31–39. doi:10.1016/j.jpowsour.2016.04.068
  • Csapó, E., Oszkó, A., Varga, E., Juhász, Á., Buzás, N., Kőrösi, L., Majzik, A., and Dékány, I. (2012). Synthesis and characterization of Ag/Au alloy and core(Ag)-shell(Au) nanoparticles, Colloids Surf. A Physicochem. Eng. Asp., 415, 281–287. doi:10.1016/j.colsurfa.2012.09.005
  • Çıplak, Z., Gökalp, C., Getiren, B., Yıldız, A., and Yıldız, N. (2018). Catalytic performance of Ag, Au and AgAu nanoparticles synthesized by lichen extract, Green Process Syn., 5, 433–440. doi:10.1515/gps-2017-0074
  • Dong, B., Liu, G., Zhou, J., Wang, A., Wang, A., Jin, R., and Lv, H. (2015). Biogenic gold nanoparticles-reduced graphene oxide nanohybrid: Synthesis, characterization and application in chemical and biological reduction of nitroaromatics, RSC Adv., 5, 97798–97806. doi:10.1039/C5RA19806B
  • Duan, S., and Wang, R. (2013). Bimetallic nanostructures with magnetic and noble metals and their physicochemical applications, Prog. Nat. Sci. Mater. Int., 23, 113–126. doi:10.1016/j.pnsc.2013.02.001
  • Edwards, H. G. M., Newton, E. M., and Wynn-Williams, D. D. (2003). Molecular structural studies of lichen substances II: Atranorin, gyrophoric acid, fumarprotocetraric acid, rhizocarpic acid, calycin, pulvinic dilactone and usnic acid, J. Mol. Struct., 651–653, 27–37. doi:10.1016/S0022-2860(02)00636-9
  • Ferrari, A. C., Bonaccorso, F., Fal'ko, V., Novoselov, K. S., Roche, S., Bøggild, P., Borini, S., Koppens, F. H. L., Palermo, V., Pugno, N., Garrido, J. A., Sordan, R., Bianco, A., Ballerini, L., Prato, M., Lidorikis, E., Kivioja, J., Marinelli, C., Ryhänen, T., Morpurgo, A., Coleman, J. N., Nicolosi, V., Colombo, L., Fert, A., Garcia-Hernandez, M., Bachtold, A., Schneider, G. F., Guinea, F., Dekker, C., Barbone, M., Sun, Z., Galiotis, C., Grigorenko, A. N., Konstantatos, G., Kis, A., Katsnelson, M., Vandersypen, L., Loiseau, A., Morandi, V., Neumaier, D., Treossi, E., Pellegrini, V., Polini, M., Tredicucci, A., Williams, G. M., Hee Hong, B., Ahn, J.-H., Min Kim, J., Zirath, H., van Wees, B. J., van der Zant, H., Occhipinti, L., Di Matteo, A., Kinloch, I. A., Seyller, T., Quesnel, E., Feng, X., Teo, K., Rupesinghe, N., Hakonen, P., Neil, S. R. T., Tannock, Q., Löfwander, T., and Kinaret, J. (2015). Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, Nanoscale, 7, 4598–4810. doi:10.1039/C4NR01600A
  • Gebru, H., Cui, S., Li, Z. J., Wang, X., Pan, X. F., Liu, J. J., and Guo, K. (2017). Facile pH-Dependent synthesis and characterization of catechol stabilized silver nanoparticles for catalytic reduction of 4-Nitrophenol, Catal. Lett., 147, 2134–2143. doi:10.1007/s10562-017-2100-y
  • Geim, A. K., and Novoselov, K. S. (2007). The rise of graphene, Nat. Mater., 6, 183–191. doi:10.1038/nmat1849
  • Ghosh, S., and Jagirdar, B. R. (2018). A capping agent dissolution method for the synthesis of metal nanosponges and their catalytic activity towards nitroarene reduction under mild conditions, Dalton Trans., 47, 17401–17411. doi:10.1039/c8dt03854f
  • Haldar, K. K., Kundu, S., and Patra, A. (2014). Core-size-dependent catalytic properties of bimetallic Au/Ag core–shell nanoparticles, ACS Appl. Mater. Interfaces, 6, 21946–21953. doi:10.1021/am507391d
  • Hareesh, K., Williams, J. F., Dhole, N. A., Kodam, K. M., Bhoraskar, V. N., and Dhole, S. D. (2016). Bio-green synthesis of Ag-GO, Au-GO and Ag-Au-GO nanocomposites using Azadirachta indica: Its application in SERS and cell viability, Mater Res Express, 3. 1–9. doi:10.1088/2053-1591/3/7/075010
  • Hsu, K. C., and Chen, D. H. (2014). Green synthesis and synergistic catalytic effect of Ag/reduced graphene oxide nanocomposite, Nanoscale Res Lett., 9. 1–10. doi:10.1186/1556-276X-9-484
  • Kumari, M., Mishra, A., Pandey, S., Singh, S. P., Chaudhry, V., Mudiam, M. K. R., Shukla, S., Kakkar, P., and Nautiyal, C. S. (2016). Physico-chemical condition optimization during biosynthesis lead to development of improved and catalytically efficient gold nano particles, Sci Rep., 6. 1–14. doi:10.1038/srep27575
  • Liu, C.-H., Chen, X.-Q., Hu, Y.-F., Sham, T.-K., Sun, Q.-J., Chang, J.-B., Gao, X., Sun, X.-H., and Wang, S.-D. (2013). One-pot environmentally friendly approach toward highly catalytically active bimetal-nanoparticle-graphene hybrids, ACS Appl. Mater. Interfaces, 5, 5072–5079. doi:10.1021/am4008853
  • Lv, J. J., Wang, A. J., Ma, X., Xiang, R. Y., Chen, J. R., and Feng, J. J. (2015). One-pot synthesis of porous Pt-Au nanodendrites supported on reduced graphene oxide nanosheets toward catalytic reduction of 4-nitrophenol, J. Mater. Chem. A, 3, 290–296. doi:10.1039/c4ta05034g
  • Mata, R., Bhaskaran, A., and Sadras, S. R. (2016). Green-synthesized gold nanoparticles from plumeria Alba flower extract to augment catalytic degradation of organic dyes and inhibit bacterial growth, Particuology, 24, 78–86. doi:10.1016/j.partic.2014.12.014
  • Meena Kumari, M., Jacob, J., and Philip, D. (2015). Green synthesis and applications of Au-Ag bimetallic nanoparticles, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 137, 185–192. doi:10.1016/j.saa.2014.08.079
  • Minz, S., Garg, S., and Gupta, R. (2018). Catalytic wet peroxide oxidation of 4-Nitrophenol over Al-Fe PILC: Kinetic study using Fermi’s equation and mechanistic pathways based on TOC reduction, Chem. Eng. Commun., 205, 667–679. doi:10.1080/00986445.2017.1412310
  • Neppolian, B., Wang, C., and Ashokkumar, M. (2014). Sonochemically synthesized Mono and bimetallic Au–Ag reduced graphene oxide based nanocomposites with enhanced catalytic activity, Ultrason. Sonochem., 21, 1948–1953. doi:10.1016/j.ultsonch.2014.02.006
  • Nurunnabi, M., Parvez, K., Nafiujjaman, M., Revuri, V., Khan, H. A., Feng, X. L., and Lee, Y. K. (2015). Bioapplication of graphene oxide derivatives: Drug/gene delivery, imaging, polymeric modification, toxicology, therapeutics and challenges, RSC Adv., 5, 42141–42161. doi:10.1039/C5RA04756K
  • Qin, L., Xu, H., Zhu, K., Kang, S. Z., Li, G. D., and Li, X. Q. (2017). Noble-metal-free copper nanoparticles/reduced graphene oxide composite: A new and highly efficient catalyst for transformation of 4-Nitrophenol, Catal. Lett., 147, 1315–1321. doi:10.1007/s10562-017-2038-0
  • Sadhukhan, S., Ghosh, T. K., Rana, D., Roy, I., Bhattacharyya, A., Sarkar, G., Chakraborty, M., and Chattopadhyay, D. (2016). Studies on synthesis of reduced graphene oxide (RGO) via green route and its electrical property, Mater. Res. Bull., 79, 41–51. doi:10.1016/j.materresbull.2016.02.039
  • Sheny, D. S., Mathew, J., and Philip, D. (2011). Phytosynthesis of Au, Ag and Au-Ag bimetallic nanoparticles using aqueous extract and dried leaf of anacardium occidentale, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 79, 254–262. doi:10.1016/j.saa.2011.02.051
  • Shin, K. S., Kim, J. H., Kim, I. H., and Kim, K. (2012). Novel fabrication and catalytic application of poly(ethylenimine)-stabilized gold–silver alloy nanoparticles, J. Nanoparticle Res., 14, 735. doi:10.1007/s11051-012-0735-6
  • Som, T., and Karmakar, B. (2009). Core–shell Au-Ag nanoparticles in dielectric nanocomposites with plasmon-enhanced fluorescence: A new paradigm in antimony glasses, Nano Res., 2, 607–616. doi:10.1007/s12274-009-9061-4
  • Song, P., He, L., Wang, A. J., Mei, L. P., Zhong, S. X., Chen, J. R., … Feng, J. J. (2015). Surfactant-free synthesis of reduced graphene oxide supported porous PtAu alloyed nano flowers with improved catalytic activity, J. Mater. Chem. A, 3, 5321–5327. doi:10.1039/c5ta00041f
  • Tamuly, C., Hazarika, M., Borah, S. C., Das, M. R., and Boruah, M. P. (2013). In situ biosynthesis of Ag, Au and bimetallic nanoparticles using piper pedicellatum C.DC: Green chemistry approach, Colloids Surf. B Biointerfaces, 102, 627–634. doi:10.1016/j.colsurfb.2012.09.007
  • Umadevi, M., Bindhu, M. R., and Sathe, V. (2013). A novel synthesis of malic acid capped silver nanoparticles using Solanum lycopersicums fruit extract, J. Mater. Sci. Technol., 29, 317–322. doi:10.1016/j.jmst.2013.02.002
  • Wang, D., and Li, Y. (2011). Bimetallic nanocrystals: Liquid-phase synthesis and catalytic applications, Adv. Mater., 23, 1044–1060. doi:10.1002/adma.201003695
  • Wei, D., and Liu, Y. (2010). Controllable synthesis of graphene and its applications, Adv. Mater., 22, 3225–3241. doi:10.1002/adma.200904144
  • Wu, T., Zhang, L., Gao, J. P., Liu, Y., Gao, C. J., and Yan, J. (2013). Fabrication of graphene oxide decorated with Au–Ag alloy nanoparticles and its superior catalytic performance for the reduction of 4-nitrophenol, J. Mater. Chem. A, 1, 7384. doi:10.1039/c3ta10684e
  • Xia, B., He, F., and Li, L. (2013). Preparation of bimetallic nanoparticles using a facile green synthesis method and their application, Langmuir, 29, 4901–4907. doi:10.1021/la400355u
  • Xu, L. D., Hong, M., Wang, Y. L., Li, M., Li, H. B., Nair, M. P. N., and Li, C. Z. (2016). Tunable synthesis solid or hollow Au–Ag nanostructure, assembled with GO and comparative study of their catalytic properties, Sci. Bull., 61, 1525–1535. doi:10.1007/s11434-016-1165-0
  • Xu, M. N., Heidmarsson, S., Olafsdottir, E. S., Buonfiglio, R., Kogej, T., and Omarsdottir, S. (2016). Secondary metabolites from Cetrarioid lichens: Chemotaxonomy, biological activities and pharmaceutical potential, Phytomedicine, 23, 441–459. doi:10.1016/j.phymed.2016.02.012
  • Xu, Z., Gao, H., and Guoxin, H. (2011). Solution-based synthesis and characterization of a silver nanoparticle-graphene hybrid film, Carbon NY, 49, 4731–4738. doi:10.1016/j.carbon.2011.06.078
  • Yıldız, N., Ateş, C., Yılmaz, M., Demir, D., Yıldız, A., and Çalımlı, A. (2014). Investigation of lichen based green synthesis of silver nanoparticles with response surface methodology, Green Process Synth., 3, 259–270. doi:10.1515/gps-2014-0024
  • Yuan, X., Xiao, S., and Taylor, T. N. (2005). Lichen-like symbiosis 600 million years ago, Science, 80, 1017–1020. doi:10.1126/science.1111347
  • Zhang, X., Qu, Y., Shen, W., Wang, J., Li, H., Zhang, Z., Li, S., and Zhou, J. (2016). Biogenic synthesis of gold nanoparticles by yeast Magnusiomyces ingens LH-F1 for catalytic reduction of nitrophenols, Colloids Surf. A Physicochem. Eng. Asp., 497, 280–285. doi:10.1016/j.colsurfa.2016.02.033
  • Zhang, X., Zhu, X., Feng, J., and Wang, A. (2018). Solvothermal synthesis of N-doped graphene supported PtCo nanodendrites with highly catalytic activity for 4-nitrophenol reduction, Appl. Surf. Sci., 428, 798–808. doi:10.1016/j.apsusc.2017.09.200
  • Zhu, X. Y., Lv, Z. S., Feng, J. J., Yuan, P. X., Zhang, L., Chen, J. R., and Wang, A. J. (2018). Controlled fabrication of well-dispersed AgPd nanoclusters supported on reduced graphene oxide with highly enhanced catalytic properties towards 4-nitrophenol reduction, J. Colloid Interface Sci., 516, 355–363. doi:10.1016/j.jcis.2018.01.047

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.