152
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Investigation of crystal growth of borax in single and dual impeller batch cooling crystallizer

, , &

References

  • Ameur, H. (2015). Energy efficiency of different impellers in stirred tank reactors, Energy, 93, 1980–1988.
  • Ameur, H., Bouzit, M., and Ghenaim, A. (2015). Numerical study of the performance of multistage Scaba 6SRGT impellers for the agitation of yield stress fluids in cylindrical tanks, J. Hydrodyn., 27, 436–442.
  • ANSYS Inc. (2016). ANSYS (Ansys Fluent 17.2 software). Canonsburg: Ansys Inc.
  • Bouaifi, M., and Roustan, M. (2001). Power consumption, mixing time and homogenisation energy in dual-impeller agitated gas–liquid reactors, Chem. Eng. Process., 40, 87–95.
  • Cetin, E., Eroglu, I., and Ozkar, S. (2001). Kinetics of gibsum formation and growth during the dissolution of colemanite in sulfuric acid, J. Cryst. Growth, 231, 559–567.
  • Ceyhan, A. A., Sahin, Ö., and Bulutcu, A. N. (2007). Crystallization kinetics of the borax decahydrate, J. Cryst. Growth, 300, 440–447.
  • Cheon, H., Kim, K.-J., and Kim, S.-H. (2005). A study on crystallization kinetics of pentaerythritol in a batch cooling crystallizer, Chem. Eng. Sci., 60, 4791–4802.
  • Čelan, A., Ćosić, M., and Kuzmanić, N. (2018). Borax crystallization kinetics in PBT-SBT dual impeller crystallizer at different impeller positions, Chem. Eng. Technol., 41, 7, 1342–1349.
  • Ćosić, M., Kaćunić, A., and Kuzmanić, N. (2016). The investigation of the influence of impeller blade inclination on borax nucleation and crystal growth kinetics, Chem. Eng. Commun., 203, 1497–1506.
  • Devi, T. T., and Kumar, B. (2013). CFD simulation of flow patterns in dual impeller stirred tank, Int. J. Model. Simulat., 33, 117–125.
  • Einenkel, W. D., and Mersmann, A. (1977). Erforderliche Drehzahl zum Suspendieren in Rührwerken, Verfahrenstechnik 11, 90–94.
  • Fradette, L., Tanguy, P. A., Bertrand, F. O., Thibault, F., Ritz, J.-B. T., and Giraud, E. (2007). CFD phenomenological model of solid-liquid mixing in stirred vessels, Comput. Chem. Eng., 31, 334–345.
  • Garside, J., Mersmann, A., and Nyvlt, J. (2002). Measurement of Crystal Growth and Nucleation Rates, 2nd ed., IChem, Rugby.
  • Green, D. (2002). Crystallizer mixing: Understanding and modeling crystallizer mixing and suspension flow. In Handbook of Industrial Crystallization, ed. Myerson, A., 181–191, Butterworth-Heinemann, Boston.
  • Grenville, R. K., and Nienow, A. W. (2004). Blending of miscible liquids, In Handbook of Industrial Mixing, eds. Paul E. L., Atiemo-Obeng V. A., and Kresta, S, 507–542, John Wiley and Sons, Hoboken, N.J.
  • Gurbuz, H., and Ozdemir, B. (2003). Experimental determination of the metastable zone width of borax decahydrate by ultrasonic velocity measurement, J. Cryst. Growth, 252, 343–349.
  • Jahoda, M., Moštĕk, M., Kukuková, A., and Machoň, V. (2007). CFD modelling of liquid homogenization in stirred tanks with one and two impellers using large eddy simulation, Chem. Eng. Res. Des., 85, 616–625.
  • Jaworski, Z., Dyster, K. N., and Nienow, A. W. (2001). The effect of size, location and pumping direction of pitched blade turbine impellers on flow patterns: LDA measurements and CFD predictions, Paper presented at the Proc. 4th Inter. Symp. Indust. Mixing-ISMIP4, May 14 – 16, 2001, Toulouse.
  • Jaworski, Z., and Nienow, A. W. (2002). CFD study of homogenization with dual rushton turbines comparison with experimental results. Part II: The multiple reference frame, Chem. Eng. Res. Des., 80, 97–103.
  • Kaćunić, A., Akrap, M., and Kuzmanić, N. (2013). Effect of impeller position in a batch cooling crystallizer on the growth of borax decahydrate crystals, Chem. Eng. Res. Des., 91, 274–285.
  • Kaćunić, A., Ćosić, M., Rušić, D., and Kuzmanić, N. (2017). Effect of impeller off-bottom clearence on crystal growth kinetics of borax in dual-impeller batch cooling crystallizer, Chem. Eng. Trans., 57, 787–792.
  • Kasat, G. R., Khopkar, A. R., Ranade, V. V., and Pandit, A. B. (2008). CFD simulation of liquid phase mixing in solid-liquid stirred reactor, Chem. Eng. Sci., 63, 3877–3885.
  • Kazemzadeh, A., Ein-Mozaffari, F., Lohi, A., and Pakzad, L. (2016). Investigation of hydrodynamic performances of coaxial mixers in agitation of yield-pseudoplasitc fluids: Single and double Central impellers in combination with the anchor, Chem. Eng. J., 294, 417–430.
  • Khopkar, A. R., Kasat, G. R., Pandit, A. B., and Ranade, V. V. (2006). Computational fluid dynamics simulation of the solid suspension in a stirred slurry reactor, Ind. Eng. Chem. Res., 45, 4416–4428.
  • Kukuková, A., Moštěk, M., Jahoda, M., and Machoň, V. (2005). CFD prediction of flow and homogenization in a stirred vessel: Part I. Vessel with one and two impellers, Chem. Eng. Technol., 28, 1125–1133.
  • Lamberto, D. J., Alvarez, M. M., and Muzzio, F. J. (1999). Experimental and computational investigation of the laminar flow structure in a stirred tank, Chem. Eng. Sci., 54, 919–942.
  • Leng, D. E., and Calabrese, R. V. (2004). Immiscible liquid–liquid systems In Handbook of Industrial Mixing, eds. Paul, E. L., Atiemo-Obeng, V. A., and Kresta, S., 639–754, John Wiley and Sons, Hoboken, N.J.
  • Li, L., Wang, J., Feng, L., and Gu, X. (2017). Computational fluid dynamics simulation of hydrodynamics in an uncovered unbaffled tank agitated by pitched blade turbines, Korean J. Chem. Eng., 34, 2811–2822.
  • Machej, K. (1997). Research into the linear crystal growth rate in batch crystallizer, Chem. Eng. Process, 36, 185–188.
  • McCabe, W. L., Smith, J. C., and Harriott, P. (2001). Unit Operations of Chemical Engineering, sixth ed., 902–944, Mc-Graw-Hill, New York.
  • Menter, F. R. (1993). Zonal two equation κ-ω turbulence models for aerodynamic flows. Paper presented at the 24th Fluid Dynamics Conference (AIAA 93-2906), July 6–9, 1993, Orlando.
  • Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications, AIAA J., 32, 1598–1605.
  • Mersmann, A. (1995). General prediction of statistically mean growth rates of a crystal collective, J. Cryst. Growth, 147, 181–193.
  • Micale, G., Brucato, A., Grisafi, F., and Ciofalo, M. (1999). Prediction of flow fields in a dual-impeller stirred vessel, AIChE J., 45, 445–464.
  • Micale, G., Montante, G., Grisafi, F., Brucato, A., and Godfrey, J. (2000). CFD simulation of particle distribution in stirred vessels, Chem. Eng. Res. Des., 78, 435–444.
  • Montante, G., Micale, G., Magelli, F., and Brucato, A. (2001). Experiments and CFD predictions of solid particle distribution in a vessel agitated with four pitched blade turbines, Chem. Eng. Res. Des., 79, 1005–1010.
  • Montante, G., and Magelli, F. (2004). Liquid homogenization characteristics in vessels stirred with multiple Rushton turbines mounted at different spacings: CFD study and comparison with experimental data, Chem. Eng. Res. Des., 82, 1179–1187.
  • Omar, W., and Ulrich, J. (2003). Influence of crystallization conditions on the mechanism and rate of crystal growth of potassium sulphate, Cryst. Res. Technol., 38, 34–41.
  • Paul, E. L., Midler, M., and Sun, Y. (2004). Mixing in the fine chemicals and pharmaceutical industries, In Handbook of Industrial Mixing, eds. Paul, E. L., Atiemo-Obeng, V. A., and Kresta, S., 987–1026, John Wiley and Sons, Hoboken, N.J.
  • Ranade, V. V., Perrard, M., Le Sauze, N., Xuereb, C., and Bertrand, J. (2001). Trailing vortices of rushton turbine: PIV measurements and CFD simulations with snapshot approach, Trans. IChemE, 79A, 3–12.
  • Ruszkowski, S. (1994). A rational method for measuring blending performance and comparison of different impeller types. Paper presented at the Proc. 8th Europ. Conf. on Mixing, September 21–23, 1994, Symposium Series No. 136 Cambridge, IChemE, Rugby.
  • Wang, T., Yu, G., Yong, Y., Yang, C., and Mao, Z.-S. (2010). Hydrodynamic characteristics of dual–impeller configurations in a multiple-phase stirred tank, Ind. Eng. Chem. Res., 49, 1001–1009.
  • Woziwodzki, S., and Jędrzejczak, Ł. (2011). Effect of eccentricity on laminar mixing in vessel stirred by double turbine impellers, Chem. Eng. Res. Des., 89, 2268–2278.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.