368
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Production of lactic acid from industrial waste paper sludge using Rhizopus oryzae MTCC5384 by simultaneous saccharification and fermentation

, , , , , , & show all

References

  • Adsul, M. G., Varma, A. J., and Gokhale, D. V. (2007). Lactic acid production from waste sugarcane bagasse derived cellulose, Green Chem., 9, 58–62. doi: 10.1039/b605839f
  • Akao, S., Nagare, H., Maeda, M., Kondo, K., and Fujiwara, T. (2016). Non-sterile simultaneous saccharification and fermentation of corn leaves and stalks to l-lactic acid without external nutrient addition, J. Mater. Cycles Waste Manag., 18, 208–214.
  • Bergmann, M., Tekman, M. B., and Gutow, L. (2017). Marine litter: Sea change for plastic pollution, Nature, 544, 297.
  • Budhavaram, N. K., and Fan, Z. (2009). Production of lactic acid from paper sludge using acid-tolerant, thermophilic Bacillus coagulan strains, Bioresour. Technol., 100, 5966–5972.
  • Cui, F., Li, Y., and Wan, C. (2011). Lactic acid production from corn stover using mixed cultures of Lactobacillus rhamnosus and Lactobacillus brevis, Bioresour. Technol., 102, 1831–1836.
  • Drumright, B. R. E., Gruber, P. R., and Henton, D. E. (2000). Polylactic acid technology, Adv. Mater., 12, 1841–1846. doi: 10.1002/1521-4095(200012)12:23<1841::AID-ADMA1841>3.0.CO;2-E
  • Dusselier, M., Van Wouwe, P., Dewaele, A., Makshina, E., and Sels, B. F. (2013). Lactic acid as a platform chemical in the biobased economy: The role of chemocatalysis, Energy Environ. Sci., 6, 1415–1442.
  • Eş, I., Mousavi Khaneghah, A., Barba, F. J., Saraiva, J. A., Sant'Ana, A. S., and Hashemi, S. M. B. (2018). Recent advancements in lactic acid production-a review, Food Res. Int., 107, 763.
  • Fitzpatrick, M., Champagne, P., Cunningham, M. F., and Whitney, R. A. (2010). Bioresource technology a biorefinery processing perspective: Treatment of lignocellulosic materials for the production of value-added products, Bioresour. Technol., 101, 8915. doi: 10.1016/j.biortech.2010.06.125
  • Jeoh, T., Cardona, M. J., Karuna, N., Mudinoor, A. R., and Nill, J. (2017). Mechanistic kinetic models of enzymatic cellulose hydrolysis—a review, Biotechnol. Bioeng., 114, 1369–1385.
  • Jiang, J., Zhu, L., Wang, K., and Wang, W. (2006). Simultaneous saccharification and fermentation of steam-pretreated lespedeza stalks for the production of ethanol, For. Stud. China, 8, 30–33.
  • John, R. P., Anisha, G. S., Nampoothiri, K. M., and Pandey, A. (2009). Direct lactic acid fermentation: Focus on simultaneous saccharification and lactic acid production, Biotechnol. Adv., 27, 145–152.
  • Kang, L., Wang, W., and Lee, Y. Y. (2010). Bioconversion of kraft paper mill sludges to ethanol by SSF and SSCF, Appl. Biochem. Biotechnol., 161, 53–66.
  • Krishna, S. H., Reddy, T. J., and Chowdary, G. V. (2001). Simultaneous saccharification and fermentation of lignocellulosic wastes to ethanol using a thermotolerant yeast, Bioresour. Technol., 77, 193–196.
  • Lin, Y., Wang, D., Wu, S., and Wang, C. (2009). Alkali pretreatment enhances biogas production in the anaerobic digestion of pulp and paper sludge, J. Hazard. Mater., 170, 366–373.
  • Maki, M., Leung, K. T., and Qin, W. (2009). The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass, Int. J. Biol. Sci., 5, 500.
  • Marques, S., Santos, J. A. L., Gírio, F. M., and Roseiro, J. C. (2008). Lactic acid production from recycled paper sludge by simultaneous saccharification and fermentation, Biochem. Eng. J., 41, 210–216. doi: 10.1016/j.bej.2008.04.018
  • Meussen, B. J., de Graaff, L. H., Sanders, J. P. M., and Weusthuis, R. A. (2012). Metabolic engineering of Rhizopus oryzae for the production of platform chemicals, Appl. Microbiol. Biotechnol., 94, 875–886.
  • Moritz, J. W., and Duff, S. J. B. (2000). Simultaneous saccharification and extractive fermentation of cellulosic substrates, Biotechnol. Bioeng. 49, 504–511.
  • Murariu, M., and Dubois, P. (2016). PLA composites: From production to properties, Adv. Drug Deliv. Rev., 107, 17–46.
  • Nguyen, C. M., Kim, J.-S., Nguyen, T. N., Kim, S. K., Choi, G. J., Choi, Y. H., Jang, K. S., and Kim, J.-C. (2013). Production of L-and D-lactic acid from waste Curcuma longa biomass through simultaneous saccharification and cofermentation, Bioresour. Technol., 146, 35–43.
  • Nishimura, H., Tan, L., Kira, N., Tomiyama, S., Yamada, K., Sun, Z.-Y., Tang, Y.-Q., Morimura, S., and Kida, K. (2017). Production of ethanol from a mixture of waste paper and kitchen waste via a process of successive liquefaction, presaccharification, and simultaneous saccharification and fermentation, Waste Manag., 67, 86–94. doi: 10.1016/j.wasman.2017.04.030
  • Rajoka, M. I. (2005). Regulation of synthesis of endo-xylanase and β-xylosidase in Cellulomonas flavigena: A kinetic study, World J. Microbiol. Biotechnol., 21, 463–469.
  • Saratale, G. D., Saratale, R. G., Lo, Y., and Chang, J. (2010). Multicomponent cellulase production by Cellulomonas biazotea NCIM‐2550 and its applications for cellulosic biohydrogen production, Biotechnol. Prog., 26, 406–416.
  • Sreenath, H. K., Moldes, A. B., Koegel, R. G., and Straub, R. J. (2001). Lactic acid production from agriculture residues, Biotechnol. Lett., 23, 179–184.
  • Takano, M., and Hoshino, K. (2016). Lactic acid production from paper sludge by SSF with thermotolerant Rhizopus sp, Bioresour. Bioprocess., 3, 29.
  • Tomás‐Pejó, E., Oliva, J. M., Ballesteros, M., and Olsson, L. (2008). Comparison of SHF and SSF processes from steam‐exploded wheat straw for ethanol production by xylose‐fermenting and robust glucose‐fermenting Saccharomyces cerevisiae strains, Biotechnol. Bioeng., 100, 1122–1131.
  • Wu, X., Jiang, S., Zhang, M., Luo, S., Li, X., Pan, L., Zheng, Z., and Liu, M. (2015). A new method studying the kinetics of l-lactic acid production by pellets Rhizopus oryzae in semi-continuous fermentation, Ann. Microbiol., 65, 1473–1480. doi: 10.1007/s13213-014-0986-9
  • Zhang, Y., Chen, X., Luo, J., Qi, B., and Wan, Y. (2014). An efficient process for lactic acid production from wheat straw by a newly isolated Bacillus coagulans strain IPE22, Bioresour. Technol., 158, 396–399. doi: 10.1016/j.biortech.2014.02.128
  • Zhang, Y., Yoshida, M., and Vadlani, P. V. (2018). Biosynthesis of d-lactic acid from lignocellulosic biomass, Biotechnol. Lett., 40, 1–13.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.