139
Views
1
CrossRef citations to date
0
Altmetric
Articles

Response surface methodology optimization of integrated fluidized bed adsorption–Fenton oxidation for removal of Reactive Black 5

ORCID Icon, & ORCID Icon

References

  • Abdi J, Vossoughi M, Mahmoodi NM, Alemzadeh I. 2017. Synthesis of metal-organic framework hybrid nanocomposites based on GO and CNT with high adsorption capacity for dye removal. Chem Eng J. 326:1145–1158. doi: 10.1016/j.cej.2017.06.054
  • Abidi N, Errais E, Duplay J, Berez A, Jrad A, Schäfer G, Ghazi M, Semhi K, Trabelsi-Ayadi M. 2015. Treatment of dye-containing effluent by natural clay. J Clean Prod. 86:432–440. doi: 10.1016/j.jclepro.2014.08.043
  • Amorim CC, Leão MMD, Moreira RFPM, Fabris JD, Henriques AB. 2013. Performance of blast furnace waste for azo dye degradation through photo-fenton-like processes. Chem Eng J. 224:59–66. doi: 10.1016/j.cej.2013.01.053
  • Argun MA, Karatas M. 2011. Application of Fenton process for decolorization of Reactive Black 5 from synthetic wastewater: kinetics and thermodynamics. Environ Prog Sustain Energy. 30(4):540–548. doi: 10.1002/ep
  • Bello MM, Raman AAA. 2019. Synergy of adsorption and advanced oxidation processes in recalcitrant wastewater treatment. Environ Chem Lett. 17(2):1125–1142. doi: 10.1007/s10311-018-00842-0
  • Bello MM, Raman AAA, Asghar A. 2019a. A review on approaches for addressing the limitations of Fenton oxidation for recalcitrant wastewater treatment. Process Saf Environ Prot. 126:119–140. doi: 10.1016/j.psep.2019.03.028
  • Bello MM, Raman AAA, Asghar A. 2019b. Interaction patterns in fluidized-bed Fenton process for the degradation of recalcitrant pollutants: theoretical and experimental insights. Chem Pap. 73(10):2591–2602. doi: 10.1007/s11696-019-00813-x
  • Box GEP, Behnken DW. 1960. Some new three level designs for the study of quantitative variables. Technometrics. 2(4):455–475.
  • Brillas E, Martínez-Huitle CA. 2015. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Appl Catal B Environ. 166–167:603–643. doi: 10.1016/j.apcatb.2014.11.016
  • Cerrón-Calle GA, Aranda-Aguirre AJ, Luyo C, Garcia-Segura S, Alarcón H. 2019. Photoelectrocatalytic decolorization of azo dyes with nano-composite oxide layers of ZnO nanorods decorated with Ag nanoparticles. Chemosphere. 219:296–304. doi: 10.1016/j.chemosphere.2018.12.003
  • Clarizia L, Russo D, Di Somma I, Marotta R, Andreozzi R. 2017. Homogeneous photo-Fenton processes at near neutral pH: a review. Appl Catal B Environ. 209:358–371. doi: 10.1016/j.apcatb.2017.03.011
  • Dewil R, Mantzavinos D, Poulios I, Rodrigo MA. 2017. New perspectives for advanced oxidation processes. J Environ Manage. 195:93–99. doi: 10.1016/j.jenvman.2017.04.010
  • Fayazi M, Ali M, Afzali D, Mostafavi A. 2016. Enhanced Fenton-like degradation of methylene blue by magnetically activated carbon/hydrogen peroxide with hydroxylamine as Fenton enhancer. J Mol Liq. 216:781–787. doi: 10.1016/j.molliq.2016.01.093
  • Ferreira SLC, Bruns RE, Ferreira HS, Matos GD, David JM, Brandão GC, da Silva EGP, Portugal LA, dos Reis PS, Souza AS, et al. 2007. Box-Behnken design: an alternative for the optimization of analytical methods. Anal Chim Acta. 597(2):179–186. doi: 10.1016/j.aca.2007.07.011
  • Galehdar M, Younesi H, Hadavifar M, Zinatizadeh AA. 2009. Optimization of a photo-assisted Fenton oxidation process: a statistical model for MDF effluent treatment. Clean Soil Air Water. 37(8):629–637. doi: 10.1002/clen.200900052
  • Hu S, Yao H, Wang K, Lu C, Wu Y. 2015. Intensify removal of nitrobenzene from aqueous solution using nano-zero valent iron/granular activated carbon composite as Fenton-like catalyst. Water Air Soil Pollut. 226(5):1–13. doi: 10.1007/s11270-015-2421-7
  • Jafari JA, Kakavandi B, Jaafarzadeh N, Kalantary RR, Ahmadi M, Babaei AA. 2017. Fenton-like catalytic oxidation of tetracycline by AC@Fe3O4 as a heterogeneous persulfate activator: adsorption and degradation studies. J Ind Eng Chem. 45:323–333. doi: 10.1016/j.jiec.2016.09.044
  • Kalra SS, Mohan S, Sinha A, Singh G. 2011. Advanced oxidation processes for treatment of textile and dye wastewater: a review. 2nd Int Conf Environ Sci Dev. 4:271–275.
  • Katheresan V, Kansedo J, Lau SY. 2018. Efficiency of various recent wastewater dye removal methods: a review. J Environ Chem Eng. 6(4):4676–4697. doi: 10.1016/j.jece.2018.06.060
  • Kwon B, Lee DSOO, Kang N, Yoon J. 1999. Characteristics of P-chlorophenol oxidation by Fenton’s reagent. Water Res. 33(9):2110–2118.
  • Lai KC, Lee LY, Hiew BYZ, Thangalazhy-Gopakumar S, Gan S. 2019. Environmental application of three-dimensional graphene materials as adsorbents for dyes and heavy metals: review on ice-templating method and adsorption mechanisms. J Environ Sci (China). 79:174–199. doi: 10.1016/j.jes.2018.11.023
  • Lau A, Alberto L, Teixeira C, Valéria F, Yokoyama L. 2016. Evaluation of the mercaptobenzothiazole degradation by combined adsorption process and Fenton reaction using iron mining residue. Environ Technol. 38:2032–2039. doi: 10.1080/09593330.2016.1244571
  • Li F, Bao J, Zhang TC, Lei Y. 2015. A combined process of adsorption and Fenton-like oxidation for furfural removal using zero-valent iron residue. Environ Technol. 36(24):3103–3111. doi: 10.1080/09593330.2015.1054317
  • Li W, Mu B, Yang Y. 2019. Feasibility of industrial-scale treatment of dye wastewater via bio-adsorption technology. Bioresour Technol. 277:157–170. doi: 10.1016/j.biortech.2019.01.002
  • Lyu C, Zhou D, Wang J. 2016. Removal of multi-dye wastewater by the novel integrated adsorption and Fenton oxidation process in a fluidized bed reactor. Environ Sci Pollut Res. 23(20):20893–20903. doi: 10.1007/s11356-016-7272-2
  • Meerbergen K, Willems KA, Dewil R, Van Impe J, Appels L, Lievens B. 2018. Isolation and screening of bacterial isolates from wastewater treatment plants to decolorize azo dyes. J Biosci Bioeng. 125(4):448–456. doi: 10.1016/j.jbiosc.2017.11.008
  • Miklos DB, Remy C, Jekel M, Linden KG, Drewes JE, Hübner U. 2018. Evaluation of advanced oxidation processes for water and wastewater treatment – a critical review. Water Res. 139:118–131. doi: 10.1016/j.watres.2018.03.042
  • Mu’azu ND, Haladu SA, Jarrah N, Zubair M, Essa MH, Ali SA. 2018. Polyaspartate extraction of cadmium ions from contaminated soil: evaluation and optimization using central composite design. J Hazard Mater. 342:58–68. doi: 10.1016/j.jhazmat.2017.08.013
  • Neyens E, Baeyens J. 2003. A review of classic Fenton’s peroxidation as an advanced oxidation technique. J Hazard Mater. 98(1-3):33–50. doi: 10.1016/S0304-3894(02)00282-0
  • Nidheesh PV, Zhou M, Oturan MA. 2018. An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes. Chemosphere. 197:210–227. doi: 10.1016/j.chemosphere.2017.12.195
  • Nordin N, Ho LN, Ong SA, Ibrahim AH, Wong YS, Lee SL, Oon YS, Oon YL. 2017. Hybrid system of photocatalytic fuel cell and Fenton process for electricity generation and degradation of Reactive Black 5. Sep Purif Technol. 177:135–141. doi: 10.1016/j.seppur.2016.12.030
  • Rai A, Mohanty B, Bhargava R. 2016. Supercritical extraction of sunflower oil: a central composite design for extraction variables. Food Chem. 192:647–659. doi: 10.1016/j.foodchem.2015.07.070
  • Ramírez-Sosa DR, Castillo-Borges ER, Méndez-Novelo RI, Sauri-Riancho MR, Barceló-Quintal M, Marrufo-Gómez JM. 2013. Determination of organic compounds in landfill leachates treated by Fenton – Adsorption. Waste Manag. 33(2):390–395. doi: 10.1016/j.wasman.2012.07.019
  • Ratanatamskul C, Chintitanun S, Masomboon N, Lu M. 2010. Inhibitory effect of inorganic ions on nitrobenzene oxidation by fluidized-bed Fenton process. J Mol Catal A Chem. 331(1-2):101–105. doi: 10.1016/j.molcata.2010.08.007
  • Shen J, Hou Z, Gao C. 2017. Using bipolar membrane electrodialysis to synthesize di-quaternary ammonium hydroxide and optimization design by response surface methodology. Chinese J Chem Eng. 25(9):1176–1181. doi: 10.1016/j.cjche.2017.03.025
  • Su C, Pukdee-Asa M, Ratanatamskul C, Lu M. 2011. Effect of operating parameters on decolorization and COD removal of three reactive dyes by Fenton ’ s reagent using fluidized-bed reactor. Desalination. 278(1–3):211–218. doi: 10.1016/j.desal.2011.05.022
  • Tanhaei B, Ayati A, Sillanpää M. 2019. Magnetic xanthate modified chitosan as an emerging adsorbent for cationic azo dyes removal: kinetic, thermodynamic and isothermal studies. Int J Biol Macromol. 121:1126–1134. doi: 10.1016/j.ijbiomac.2018.10.137
  • Tarley CRT, Silveira G, dos Santos WNL, Matos GD, da Silva EGP, Bezerra MA, Miro M, Ferreira SLC. 2009. Chemometric tools in electroanalytical chemistry: methods for optimization based on factorial design and response surface methodology. Microchem J. 92(1):58–67. doi: 10.1016/j.microc.2009.02.002
  • Thankappan R, Nguyen TV, Srinivasan SV, Vigneswaran S, Kandasamy J, Loganathan P. 2015. Removal of leather tanning agent syntan from aqueous solution using Fenton oxidation followed by GAC adsorption. J Ind Eng Chem. 21:483–488. doi: 10.1016/j.jiec.2014.03.008
  • Usman M, Hanna K, Haderlein S. 2016. Fenton oxidation to remediate PAHs in contaminated soils: a critical review of major limitations and counter-strategies. Sci Tot Environ. 569–570:179–190. doi: 10.1016/j.scitotenv.2016.06.135
  • Vikrant K, Giri BS, Raza N, Roy K, Kim KH, Rai BN, Singh RS. 2018. Recent advancements in bioremediation of dye: current status and challenges. Bioresour Technol. 253:355–367. doi: 10.1016/j.biortech.2018.01.029
  • Villegas-Guzman P, Giannakis S, Torres-Palma RA, Pulgarin C. 2017. Remarkable enhancement of bacterial inactivation in wastewater through promotion of solar photo-Fenton at near-neutral pH by natural organic acids. Appl Catal B Environ. 205:219–227. doi: 10.1016/j.apcatb.2016.12.021
  • Wang N, Zheng T, Zhang G, Wang P. 2016. A review on Fenton-like processes for organic wastewater treatment. J Environ Chem Eng. 4(1):762–787. doi: 10.1016/j.jece.2015.12.016
  • Xia M, Ye C, Pi K, Liu D, Gerson AR. 2018. Cr(III) removal from simulated solution using hydrous magnesium oxide coated fly ash: optimization by response surface methodology (RSM). Chinese J Chem Eng. 26(5):1192–1199. doi: 10.1016/j.cjche.2017.11.008
  • Zafar MN, Dar Q, Nawaz F, Zafar MN, Iqbal M, Nazar MF. 2019. Effective adsorptive removal of azo dyes over spherical ZnO nanoparticles. J Mater Res Technol. 8(1):713–725. doi: 10.1016/j.jmrt.2018.06.002
  • Zare EN, Motahari A, Sillanpää M. 2018. Nanoadsorbents based on conducting polymer nanocomposites with main focus on polyaniline and its derivatives for removal of heavy metal ions/dyes: a review. Environ Res. 162:173–195. doi: 10.1016/j.envres.2017.12.025
  • Zhai L, Bai Z, Zhu Y, Wang B, Luo W. 2018. Fabrication of chitosan microspheres for efficient adsorption of methyl orange. Chinese J Chem Eng. 26(3):657–666. doi: 10.1016/j.cjche.2017.08.015
  • Zhang Y, Zhou M. 2019. A critical review of the application of chelating agents to enable Fenton and Fenton-like reactions at high pH values. J Hazard Mater. 362:436–450. doi: 10.1016/j.jhazmat.2018.09.035
  • Zheng J, Zhao Q, Ye Z. 2014. Preparation and characterization of activated carbon fiber (ACF) from cotton woven waste. Appl Surf Sci. 299:86–91. doi: 10.1016/j.apsusc.2014.01.190.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.