213
Views
7
CrossRef citations to date
0
Altmetric
Articles

Effect of liquid phase composition on the experimental determination of binary gas diffusivities in an isothermal Stefan diffusion column

, &

References

  • Adamson AW. 1967. Physical chemistry of surfaces, 2nd ed.; New York City (NY): Interscience Publishers, Inc., A Division of John Wiley & Sons, Inc.
  • Alhashash A, Saleh H. 2017. Combined solutal and thermal buoyancy thermocapillary convection in a square open cavity. JAFM. 10(4):1113–1124. doi:10.18869/acadpub.jafm.73.241.27297
  • Alkindi AS, Al-Wahaibi YM, Muggeridge AH. 2008. Physical properties (density, excess molar volume, viscosity, surface tension, and refractive index) of ethanol + glycerol. J Chem Eng Data. 53(12):2793–2796. doi:10.1021/je8004479
  • Álvarez R, Bueno JL, Coca J. 1981. Measurement of gaseous diffusion coefficients at and above the normal boiling point temperature of the liquid by the Stefan-Winkelmann method. J Chem Eng Japan. 14(3):239–241. doi:10.1252/jcej.14.239
  • Arnold JH. 1930. Studies in diffusion. I. Estimation of diffusivities in gaseous systems. Ind Eng Chem. 22(10):1091–1095. doi:10.1021/ie50250a023
  • Arnold JH. 1944. Studies in diffusion. III. Unsteady-state vaporization and absorption. Trans Am Inst Chem Eng. 40:361–378.
  • Babu V, Korpela SA. 1990. Three-dimensional thermocapillary convection in a cavity. Comput Fluids. 18(2):229–238. doi:10.1016/0045-7930(90)90022-P
  • Baumgartner G. 1877. Versuche über Verdampfung. Sitzungsberichte der Mathematisch-Naturwissenschaftlichen Classe der Kaiserlichen Akademie der Wissenschaften Wien. 75(Abteilung II):313–319.
  • Behnia M, Stella F, Guj G. 1995. A numerical study of three-dimensional combined buoyancy and thermocapillary convection. Int J Multiphase Flow. 21(3):529–542. doi:10.1016/0301-9322(94)00062-O
  • Bénard H. 1901. Les tourbillons cellulaires dans une nappe liquide transportant de la chaleur par convection en régime permanent, Ann Chim Phys 7e série. 23:62–144. Retrieved from https://babel.hathitrust.org/cgi/pt?id=hvd.hx3e3p;view=1up;seq=72.
  • Bennacer R, Sefiane K, El-Ganaoui M, Buffone C. 2004. Numerical investigation of the role of non-uniform evaporation rate in initiating Marangoni convection in capillary tubes. Int J Num Meth Hff. 14(7):879–892. doi:10.1108/09615530410546281
  • Berezhnoi AN, Semenov AV. 1997. Binary diffusion coefficients of liquid vapors in gases. Shakhlevich K, Russian-to-English translator. New York City (NY): Begell House, Inc.
  • Bergman TL, Keller JR. 1988. Combined buoyancy, surface tension flow in liquid metals. Num Heat Transfer. 13(1):49–63. doi:10.1080/10407788808913603
  • Bergman TL, Ramadhyani S. 1986. Combined buoyancy- and thermocapillary-driven convection in open square cavities. Num Heat Transfer. 9(4):441–451. doi:10.1080/10407788608913487
  • Bhuiyan MHU, Saidur R, Amalina MA, Mostafizur RM, Islam AKMS. 2015. Effect of nanoparticles concentration and their sizes on surface tension of nanofluids. Proc Eng. 105:431–437. doi:10.1016/j.proeng.2015.05.030
  • Biery JC. 1970. Some mathematical characteristics of menisci and their use in determination of surface tension. AIChE J. 16(5):787–792. doi:10.1002/aic.690160517
  • Bird RB, Stewart WE, Lightfoot EN. 2007. Transport phenomena, revised 2nd ed.; New York City (NY): John Wiley & Sons, Inc.
  • Birikh RV. 1966. Thermocapillary convection in a horizontal layer of liquid. J Appl Mech Tech Phys. 7(3):43–44. doi:10.1007/BF00914697
  • Blake TD. 2006. The physics of moving wetting lines. J Colloid Interface Sci. 299(1):1–13. doi:10.1016/j.jcis.2006.03.051
  • Block MJ. 1956. Surface tension as the cause of Bénard cells and surface deformation in a liquid film. Nature 178(4534):650–651. doi:10.1038/178650a0
  • Bose NK, Chakraborty BN. 1955-56. Diffusion coefficients of vapours into pure gases and their mixtures, Transactions of the Indian Institute of Chemical Engineers 8(part I):67-72. A copy of this reference was kindly provided by the Indian Institute of Chemical Engineers, Jadavpur University Campus, Kolkata, India.
  • Braunsfurth MG, Homsy GM. 1997. Combined thermocapillary-buoyancy convection in a cavity. Part II. An experimental study. Phys Fluids. 9(5):1277–1286. doi:10.1063/1.869243
  • Buffone C, Sefiane K. 2004a. Investigation of thermocapillary convective patterns and their role in the enhancement of evaporation from pores. Int J Multiphase Flow. 30(9):1071–1091. doi:10.1016/j.ijmultiphaseflow.2004.05.010
  • Buffone C, Sefiane K. 2004b. IR measurements of interfacial temperature during phase change in a confined environment. Exp Thermal Fluid Sci. 29(1):65–74. doi:10.1016/j.expthermflusci.2004.02.004
  • Buffone C, Sefiane K, Christy JRE. 2004. Experimental investigation of the hydrodynamics and stability of an evaporating wetting film placed in a temperature gradient. App Thermal Eng. 24(8–9):1157–1170. doi:10.1016/j.applthermaleng.2003.10.038
  • Buffone C, Sefiane K, Christy JRE. 2005. Experimental investigation of self-induced thermocapillary convection for an evaporating meniscus in capillary tubes using micro-particle image velocimetry. Phys Fluids. 17(5):052104–052104-18. doi:10.1063/1.1901688
  • Buffone C, Sefiane K, Easson W. 2005. Marangoni-driven instabilities of an evaporating liquid-vapor interface. Phys Rev E. 71(5):056302-1–056302-8. doi:10.1103/PhysRevE.71.056302
  • Buffone C, Sefiane K, Minetti C. 2015. The effect of wall thickness and material on Marangoni driven convection in capillaries. Colloids Surf A: Physicochem Eng Aspects. 481:384–392. doi:10.1016/j.colsurfa.2015.05.050
  • Carpenter BM, Homsy GM. 1989. Combined buoyant-thermocapillary flow in a cavity. J Fluid Mech. 207:121–132. doi:10.1017/S0022112089002521
  • Carpenter BM, Homsy GM. 1990. High Marangoni number convection in a square cavity: Part II. Phys Fluids A Fluid Dyn. 2(2):137–149. doi:10.1063/1.857763
  • Cecere A, Buffone C, Savino R. 2014. Self-induced Marangoni flow in evaporating alcoholic solutions. Int J Heat Mass Transf. 78:852–859. doi:10.1016/j.ijheatmasstransfer.2014.07.055
  • Chamarthy P, Dhavaleswarapu HK, Garimella SV, Murthy JY, Wereley ST. 2008. Visualization of convection patterns near an evaporating meniscus using μPIV. Exp Fluids. 44(3):431–438. doi:10.1007/s00348-007-0376-1
  • Chapman S, Cowling TG. 1953. The mathematical theory of non-uniform gases: An account of the kinetic theory of viscosity, thermal conduction, and diffusion in gases, 2nd ed. (reprinted); Cambridge (England): Cambridge University Press. Chapters 10 and 14 are pertinent to this study, as well as a section on the history of the kinetic theory of gases and a classified list of relevant theoretical papers.
  • Chaudhury MK, Whitesides GM. 1992. How to make water run uphill. Science 256(5063):1539–1541. doi:10.1126/science.256.5063.1539
  • Chebbi R, Selim MS. 2006. The Stefan problem of evaporation of a volatile component from a binary liquid mixture. Heat Mass Transfer. 42(3):238–247. doi:10.1007/s00231-005-0013-6
  • Coca J, Bueno JL, Álvarez R. 1979. Evaporation of polymer-solvent mixtures: Determination of vapor pressures from gaseous diffusion coefficients. Polym Bull. 1(7):459–464. doi:10.1007/BF00255708
  • Coca J, Bueno JL, Álvarez R. 1980. Gaseous diffusion coefficients by the Stefan-Winkelmann method using a polymer-solvent mixture as evaporation source. Ind Eng Chem Fund. 19(2):219–221. doi:10.1021/i160074a016
  • Cussler EL. 2009. Diffusion: Mass transfer in fluid systems, 3rd ed.; Cambridge (England): Cambridge University Press.
  • Dalton J. 1805. On the tendency of elastic fluids to diffusion through each other. Mem Lit Philos Soc Manchester, Second Series. 1:259–270. Retrieved from https://archive.org/details/memoirsliterary05mancgoog/page/n281.
  • DasGupta S, Schonberg JA, Wayner Jr., PC. 1993. Investigation of an evaporating extended meniscus based on the augmented Young-Laplace equation. J Heat Transfer/Trans Am Soc Mech Eng. 115(1):201–208. doi:10.1115/1.2910649
  • Daviaud F, Vince JM. 1993. Traveling waves in a fluid layer subjected to a horizontal temperature gradient. Phys Rev E. 48(6):4432–4436. doi:10.1103/PhysRevE.48.4432
  • Davies ECH. 1918. Grinding glass tips for drop-weight apparatus. J Amer Chem Soc. 40(5):784–785. doi:10.1021/ja02238a006
  • Davis SH. 1987. Thermocapillary instabilities. Annu Rev Fluid Mech. 19:403–435. doi:10.1146/annurev.fl.19.010187.002155
  • Deegan RD. 2000. Pattern formation in drying drops. Phys Rev E. 61(1):475–485. doi:10.1103/PhysRevE.61.475
  • Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA. 1997. Capillary flow as the cause of ring stains from dried liquid drops. Nature 389(6653):827–829. doi:10.1038/39827
  • Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA. 2000. Contact line deposits in an evaporating drop. Phys Rev E. 62(1):756–765. doi:10.1103/PhysRevE.62.756
  • de Gans B-J, Schubert US. 2004. Inkjet printing of well-defined polymer dots and arrays. Langmuir 20(18):7789–7793. doi:10.1021/la049469o
  • de Gennes PG. 1985. Wetting: Statics and dynamics. Rev Mod Phys. 57(3):827–863. doi:10.1103/RevModPhys.57.827
  • Deng Y, Chen L, Yu J, Wang H. 2015. Nanoscopic morphology of equilibrium thin water film near the contact line. Int J Heat Mass Transf. 91:1114–1118. doi:10.1016/j.ijheatmasstransfer.2015.08.057
  • Derjaguin BV. 1979. On the dependence of the wetting tension on the meniscus curvature and the isotherm of the disjoining pressure of the liquid interlayer adjacent to it. J Colloid Interface Sci. 71(2):431–433. doi:10.1016/0021-9797(79)90251-0
  • Deryagin BV, Churaev NV. 1976. The definition of disjoining pressure and its importance in the equilibrium and flow of thin films. Colloid J USSR. 38(3):402–410. This article is an English translation of the Russian original appearing in Kolloidnyi Zhurnal.
  • Deryagin BV, Starov VM, Churaev NV. 1976. Profile of the transition zone between a wetting film and the meniscus of the bulk liquid. Colloid J USSR. 38(5):786–789. This article is an English translation of the Russian original appearing in Kolloidnyi Zhurnal.
  • Dhavaleswarapu HK, Chamarthy P, Garimella SV, Murthy JY. 2007a. Experimental investigation of steady buoyant-thermocapillary convection near an evaporating meniscus. Phys Fluids. 19(8):082103-1–082103-11. doi:10.1063/1.2752477
  • Dhavaleswarapu HK, Chamarthy P, Garimella SV, Murthy JY, Wereley ST. 2007b. Thermocapillary convection near an evaporating meniscus. J Heat Transfer/Trans Am Soc Mech Eng. 129(8):938. doi:10.1115/1.2753562
  • Dhavaleswarapu HK, Garimella SV, Murthy JY. 2009. Microscale temperature measurements near the triple line of an evaporating thin liquid film. J Heat Transfer/Trans Am Soc Mech Eng. 131(6):061501-1–061501-7. doi:10.1115/1.3090525
  • Dhavaleswarapu HK, Murthy JY, Garimella SV. 2012. Numerical investigation of an evaporating meniscus in a channel. Int J Heat Mass Transf. 55(4):915–924. doi:10.1016/j.ijheatmasstransfer.2011.10.017
  • Dorsey NE. 1926. Measurement of surface tension. Sci Pa Natl Bur Stand. 21(S540):563–595. Retrieved from https://nvlpubs.nist.gov/nistpubs/ScientificPapers/nbsscientificpaper540vol21p563_A2b.pdf.
  • Dupont O, Hennenberg M, Legros JC. 1992. Marangoni-Bénard instabilities under non-steady conditions. Experimental and theoretical results. Int J Heat Mass Transf. 35(12):3237–3244. doi:10.1016/0017-9310(92)90211-A
  • Fang G, Ward CA. 1999. Temperature measured close to the interface of an evaporating liquid. Phys Rev E. 59(1):417–428. doi:10.1103/PhysRevE.59.417
  • Ferguson A. 1915. On the drop-weight method for determining surface-tensions. Lond Edinburgh Philos Mag J Sci., Sixth Series. 30(178):632–637. Retrieved from https://www.biodiversitylibrary.org/item/122061#page/658/mode/1up.
  • Fick A. 1855. Ueber diffusion. Ann Phys Chem. 170(1):59–86. doi:10.1002/andp.18551700105
  • Foust AS, Wenzel LA, Clump CW, Maus L, Andersen LB. 1967. Principles of unit operations, 5th ed.; New York City (NY): John Wiley & Sons, Inc.
  • Freund JB. 2005. The atomic detail of an evaporating meniscus. Phys Fluids. 17(2):022104-1–022104-9. doi:10.1063/1.1843871
  • Fries N, Dreyer M. 2009. Dimensionless scaling methods for capillary rise. J Colloid Interface Sci. 338(2):514–518. doi:10.1016/j.jcis.2009.06.036
  • Fuller EN, Schettler PD, Giddings JC. 1966. A new method for prediction of binary gas-phase diffusion coefficients. Ind Eng Chem. 58(5):18–27. doi:10.1021/ie50677a007
  • Gazzola D, Franchi Scarselli E, Guerrieri R. 2009. 3D visualization of convection patterns in lab-on-chip with open microfluidic outlet. Microfluid Nanofluid. 7(5):659–668. doi:10.1007/s10404-009-0426-5
  • Getzinger RW, Wilke CR. 1967. An experimental study of nonequimolal diffusion in ternary gas mixtures. AIChE J. 13(3):577–580. doi:10.1002/aic.690130331
  • Ghadiali SN, Banks J, Swarts JD. 2002. Effect of surface tension and surfactant administration on Eustachian tube mechanics. J Appl Physiol. 93(3):1007–1014. doi:10.1152/japplphysiol.01123.2001
  • Gilliland ER. 1934. Diffusion coefficients in gaseous systems. Ind Eng Chem. 26(6):681–685. doi:10.1021/ie50294a020
  • Gillon P, Homsy GM. 1996. Combined thermocapillary-buoyancy convection in a cavity: An experimental study. Phys Fluids. 8(11):2953–2963. doi:10.1063/1.869095
  • Graham T. 1829. A short account of experimental researches on the diffusion of gases through each other, and their separation by mechanical means, The Quarterly Journal of Science, Literature, and Art, July to December, 74–83. Retrieved from https://www.biodiversitylibrary.org/item/24336#page/7/mode/1up.
  • Graham T. 1833. On the law of the diffusion of gases. Lond Edinburgh Philos Mag J Sci. Third Series. 2(9):175–190. doi:10.1080/14786443308648004; 2(10):269–276, doi:10.1080/14786443308648031; 2(11):351–358, doi:10.1080/14786443308648056
  • Graniela ME, Ramírez CA. 2019. Effect of a sweeping air stream and gas-phase aspect ratio of an isothermal Stefan diffusion column on the experimental estimation of binary gas diffusivities. Chem Eng Commun. 206(7):842–860. doi:10.1080/00986445.2018.1530992
  • Green DW, Perry RH. (Eds.). 2008. Perry’s chemical engineers’ handbook, 8th ed.; New York City (NY): The McGraw-Hill Companies, Inc.
  • Hamaker HC. 1937. The London-van der Waals attraction between spherical particles. Physica 4(10):1058–1072. doi:10.1016/S0031-8914(37)80203-7
  • Harkins WD, Brown FE. 1916. A simple apparatus for the accurate and easy determination of surface tension, with a metal thermoregulator for the quick adjustment of temperature. J Am Chem Soc. 38(2):246–252. doi:10.1021/ja02259a007
  • Harkins WD, Brown FE. 1919. The determination of surface tension (free surface energy), and the weight of falling drops: The surface tension of water and benzene by the capillary height method. J Am Chem Soc. 41(4):499–524. doi:10.1021/ja01461a003
  • Hershey AV. 1939. Ridges in a liquid surface due to the temperature dependence of surface tension. Phys Rev. 56(2):204. doi:10.1103/PhysRev.56.204
  • Hill MJ, Wilson TA, Lambert RK. 1997. Effects of surface tension and intraluminal fluid on the mechanics of small airways. J Appl Physiol. 82(1):233–239. doi:10.1152/jappl.1997.82.1.233
  • Himmelblau DM, Riggs JB. 2004. Basic principles and calculations in chemical engineering, 7th ed.; Upper Saddle River (NJ): Prentice Hall Professional Technical Reference.
  • Hines WW, Montgomery DC. 1990. Probability and statistics in engineering and management science, 3rd ed.; New York City (NY): John Wiley & Sons, Inc.
  • Hocking LM. 1995. On contact angles in evaporating liquids. Phys Fluids. 7(12):2950–2955. doi:10.1063/1.868672
  • Höhmann C, Stephan P. 2002. Microscale temperature measurement at an evaporating liquid meniscus. Exp Thermal Fluid Sci. 26(2–4):157–162. doi:10.1016/S0894-1777(02)00122-X
  • Holm FW, Goplen SP. 1979. Heat transfer in the meniscus thin-film transition region. J Heat Transfer/Trans Am Soc Mech Eng. 101(3):543–547. doi:10.1115/1.3451025
  • Holman JP. 2010. Heat transfer, 10th ed.; New York City (NY): The McGraw-Hill Companies, Inc.
  • Hu RYZ, Wang ATA, Hartnett JP. 1991. Surface tension measurement of aqueous polymer solutions. Exp Thermal Fluid Sci. 4(6):723–729. doi:10.1016/0894-1777(91)90079-7
  • Jasper JJ. 1972. The surface tension of pure liquid compounds. J Phys Chem Ref Data. 1(4):841–1009. doi:10.1063/1.3253106
  • Jasvanth VS, Ambirajan A, Arakeri JH. 2016. Experimental study on evaporation of pentane from a heated capillary slot. Int J Heat Mass Transf. 95:466–476. doi:10.1016/j.ijheatmasstransfer.2015.11.052
  • Kamotani Y, Ostrach S, Pline A. 1994. Analysis of velocity data taken in Surface Tension Driven Convection Experiment in microgravity. Phys Fluids. 6(11):3601–3609. doi:10.1063/1.868432
  • Kamotani Y, Ostrach S, Pline A. 1995. A thermocapillary convection experiment in microgravity. J Heat Transfer/Trans Am Soc Mech Eng. 117(3):611–618. doi:10.1115/1.2822621
  • Kamotani Y, Platt J. 1992. Effect of free surface shape on combined thermocapillary and natural convection. J Thermophys Heat Transfer. 6(4):721–726. doi:10.2514/3.11557
  • Katan T. 1969. Diffusion coefficients of vapors measured with a moving boundary. J Chem Phys. 50(1):233–238. doi:10.1063/1.1670782
  • Kayser RF, Schmidt JW, Moldover MR. 1985. Wetting layers and dispersion forces for a fluid in contact with a vertical wall. Phys Rev Lett. 54(7):707–710. doi:10.1103/PhysRevLett.54.707
  • Kerkhof PJAM. 1997. New light on some old problems: Revisiting the Stefan tube, Graham’s law, and the Bosanquet equation. Ind Eng Chem Res. 36(3):915–922. doi:10.1021/ie960542i
  • Khalid K, Kahn RA, Zain SM. 2012. Determination of diffusion coefficients and activation energy of selected organic liquids using reversed-flow gas chromatographic technique. Sains Malaysiana. 41(9):1109–1116. Retrieved from http://www.ukm.my/jsm/malay_journals/jilid41bil9_2012/Jilid41Bil9_2012ms1109-1116.html.
  • Kim H, Stone HA. 2018. Direct measurement of selective evaporation of binary mixture droplets by dissolving materials. J Fluid Mech. 850:769–783. doi:10.1017/jfm.2018.472
  • Kim IY, Wayner Jr., PC. 1996. Shape of an evaporating completely wetting extended meniscus. J Thermophys Heat Transfer. 10(2):320–325. doi:10.2514/3.790
  • Kimpton DD, Wall FT. 1952. Determination of diffusion coefficients from rates of evaporation. J Phys Chem. 56(6):715–717. doi:10.1021/j150498a013
  • Kirdyashkin AG. 1984. Thermogravitational and thermocapillary flows in a horizontal liquid layer under the conditions of a horizontal temperature gradient. Int J Heat Mass Transf. 27(8):1205–1218. doi:10.1016/0017-9310(84)90048-6
  • Lan B, Li Y-R, Ruan D-F. 2011. Numerical simulation of thermocapillary flow induced by non-uniform evaporation on the meniscus in capillary tubes. Micrograv Sci Technol. 23(Suppl. 1):S35–S42. doi:10.1007/s12217-011-9268-3
  • Langmuir I, Langmuir DB. 1926. The effect of monomolecular films on the evaporation of ether solutions. J Phys Chem. 31(11):1719–1731. doi:10.1021/j150281a011
  • Le Blanc M, Wuppermann G. 1916. Über die Verdampfungsgeschwindigkeit von Flüssigkeiten. Zeit Phys Chem. 91(1):143–154. doi:10.1515/zpch-1916-9108
  • Lee CY, Wilke CR. 1954. Measurements of vapor diffusion coefficient. Ind Eng Chem. 46(11):2381–2387. doi:10.1021/ie50539a046
  • Lee K-J, Kamotani Y, Yoda S. 2002. Combined thermocapillary and natural convection in rectangular containers with localized heating. Int J Heat Mass Transf. 45(23):4621–4630. doi:10.1016/S0017-9310(02)00163-1
  • Leonard C, Ferrasse J-H, Boutin O, Lefevre S, Viand A. 2018. Measurements and correlations for gas liquid surface tension at high pressure and high temperature. AIChE J. 64(11):4110–4117. doi:10.1002/aic.16216
  • Levich VG, Krylov VS. 1969. Surface-tension-driven phenomena. Annu Rev Fluid Mech. 1:293–316. doi:10.1146/annurev.fl.01.010169.001453
  • Li K, Tang ZM, Hu WR. 2012. Coupled thermocapillary convection on Marangoni convection in liquid layers with curved free surface. Int J Heat Mass Transf. 55(9-10):2726–2729. doi:10.1016/j.ijheatmasstransfer.2011.12.030
  • Ludviksson V, Lightfoot EN. 1971. The dynamics of thin liquid films in the presence of surface-tension gradients. AIChE J. 17(5):1166–1173. doi:10.1002/aic.690170523
  • Lugg GA. 1968. Diffusion coefficients of some organic and other vapors in air. Anal Chem. 40(7):1072–1077. doi:10.1021/ac60263a006
  • Maple® 2019. Maplesoft, Waterloo, Ontario, Canada: Waterloo Maple, Inc.
  • Marangoni C. 1871. Ueber die Ausbreitung der Tropfen einer Flüssigkeit auf der Oberfläche einer anderen. Ann Phys Chem. 219(7):337–354. doi:10.1002/andp.18712190702
  • Markham BL, Rosenberger F. 1980. Velocity and concentration distribution in a Stefan diffusion tube. Chem Eng Commun. 5(5–6):287–298. doi:10.1080/00986448008935970
  • Marrero TR, Mason EA. 1972. Gaseous diffusion coefficients. J Phys Chem Ref Data. 1(1):3–118. doi:10.1063/1.3253094
  • Marrero TR, Mason EA. 1973. Correlation and prediction of gaseous diffusion coefficients. AIChE J. 19(3):498–503. doi:10.1002/aic.690190312
  • Mato F, Bueno JL. 1977. Medida de coeficientes de difusión molecular. Sistemas binarios en fase gaseosa. II. Método de presión variable, Anales de Química. Real Soci Esp Fís Quím. 73(1):114–119.
  • Maxwell JC. 1860a. Illustrations of the dynamical theory of gases. Part I. On the motions and collisions of perfectly elastic spheres. Lond Edinburgh Philos Mag J Sci. Fourth Series. 19(124):19–32. Retrieved from https://www.biodiversitylibrary.org/item/53795#page/33/mode/1up.
  • Maxwell JC. 1860b. Illustrations of the dynamical theory of gases. Part II. On the process of diffusion of two or more kinds of moving particles among one another. Lond Edinburgh Philos Mag J Sci. Fourth Series. 20(130):21–33. Retrieved from https://www.biodiversitylibrary.org/item/20012#page/37/mode/1up.
  • Maxwell JC. 1860c. Illustrations of the dynamical theory of gases. Part III. On the collision of perfectly elastic bodies of any form. Lond Edinburgh Philos Mag J Sci. Fourth Series. 20(80):33–37. Retrieved from https://www.biodiversitylibrary.org/item/20012#page/49/mode/1up.
  • McBain GD, Suehrcke H, Harris JA. 2000. Evaporation from an open cylinder. Int J Heat Mass Transf. 43(12):2117–2128. doi:10.1016/S0017-9310(99)00284-7
  • McTaggart CL. 1983. Convection driven by concentration- and temperature-dependent surface tension. J Fluid Mech. 134:301–310. doi:10.1017/S0022112083003377
  • Medina JL, Ramírez CA. 2016. Theoretical and experimental estimation of binary gas diffusivities in a nonisothermal Stefan diffusion column. Chem Eng Commun. 203(12):1625–1640. doi:10.1080/00986445.2016.1223059
  • Meyer JP, Kostin MD. 1975. Circulation phenomena in Stefan diffusion. Int J Heat Mass Transf. 18(11):1293–1297. doi:10.1016/0017-9310(75)90239-2
  • Migliaccio CP, Dhavaleswarapu HK, Garimella SV. 2011. Temperature measurements near the contact line of an evaporating meniscus V-groove. Int J Heat Mass Transf. 54(7-8):1520–1526. doi:10.1016/j.ijheatmasstransfer.2010.11.040
  • Mills AF, Chang BH. 2013. Two-dimensional diffusion in a Stefan tube: The classical approach. Chem Eng Sci. 90:130–136. doi:10.1016/j.ces.2012.12.018
  • Mirzamoghadam A, Catton I. 1988. A physical model of the evaporating meniscus. J Heat Transf/Trans Am Soc Mech Eng. 110(1):201–2017. doi:10.1115/1.3250452
  • Mohammad HH, Zain SM, Khan RA, Khalid K. 2014. Establishment of physicochemical measurements of water polluting substances via flow perturbation gas chromatography. Sains Malaysiana. 43(12):1915–1925. Retrieved from http://www.ukm.my/jsm/malay_journals/jilid43bil12_2014/Jilid43Bil12_2014ms1915-1925.html.
  • Moosman S, Homsy GM. 1980. Evaporating menisci of wetting fluids. J Colloid Interface Sci. 73(1):212–223. doi:10.1016/0021-9797(80)90138-1
  • Morris SJS. 2001. Contact angles for evaporating liquids predicted and compared with existing experiments. J Fluid Mech. 432:1–30. Retrieved from https://www.cambridge.org/core/journals/journal-of-fluid-mechanics.
  • Moulinet S, Bartolo D. 2007. Life and death of a fakir droplet: Impalement transitions on superhydrophobic surfaces. Eur Phys J E. 24(3):251–260. doi:10.1140/epje/i2007-10235-y
  • Mundrane M, Zebib A. 1993. Two- and three-dimensional buoyant thermocapillary convection. Phys Fluids A: Fluid Dyn. 5(4):810–818. doi:10.1063/1.858885
  • Narsimhan G. 1955-56. Measurement of vapor diffusion coefficient, Transactions of the Indian Institute of Chemical Engineers 8(part I):73-75. A copy of this reference was kindly provided by the Indian Institute of Chemical Engineers, Jadavpur University Campus, Kolkata, India.
  • Nayak AK, Bhattacharyya S. 2012. Double-diffusive convection in a cubical lid-driven cavity with opposing temperature and concentration gradients. Theor Comput Fluid Dyn. 26(6):565–581. doi:10.1007/s00162-011-0246-6
  • Neufeld PD, Janzen AR, Aziz RA. 1972. Empirical equations to calculate 16 of the transport collision integrals Ω(l,s)* for the Lennard-Jones (12-6) potential. J Chem Phys. 57(3):1100–1102. doi:10.1063/1.1678363
  • Nield DA. 1964. Surface tension and buoyancy effects in cellular convection. J Fluid Mech. 19(3):341–352. doi:10.1017/S0022112064000763
  • Núñez GA, Sparrow EM. 1988. Models and solutions for isothermal and nonisothermal evaporation from a partially filled tube. Int J Heat Mass Transf. 31(3):461–477. doi:10.1016/0017-9310(88)90028-2
  • Pan Z, Wang H. 2010. Symmetry-to-asymmetry transition of Marangoni flow at a convex volatizing meniscus. Microfluid Nanofluid. 9(4-5):657–669. doi:10.1007/s10404-010-0579-2
  • Pan Z, Wang H. 2013. Bénard-Marangoni instability on evaporating menisci in capillary channels. Int J Heat Mass Transf. 63:239–248. doi:10.1016/j.ijheatmasstransfer.2013.03.082
  • Panchamgam SS, Gokhale SJ, Plawsky JL, DasGupta S, Wayner Jr., PC. 2005. Experimental determination of the effect of disjoining pressure on shear in the contact line region of a moving evaporating thin film. J Heat Transf/Trans Am Soc Mech Eng. 127(3):231–243. doi:10.1115/1.1857947
  • Parks CJ, Wayner Jr., PC. 1987. Surface shear near the contact line of a binary evaporating curved thin film. AIChE J. 33(1):1–10. doi:10.1002/aic.690330102
  • Pearson JRA. 1958. On convection cells induced by surface tension. J Fluid Mech. 4(5):489–500. doi:10.1017/S0022112058000616
  • Petrie RJ, Bailey T, Gorman CB, Genzer J. 2004. Fast directed motion of “fakir” droplets. Langmuir. 20(23):9893–9896. doi:10.1021/la048612a
  • Plawsky JL, Ojha M, Chatterjee A, Wayner Jr., PC. 2008. Review of the effects of surface topography, surface chemistry, and fluid physics on evaporation at the contact line. Chem Eng Commun. 196(5):658–696. doi:10.1080/00986440802569679
  • Poling BE, Prausnitz JM, O’Connell JP. 2001. The properties of gases and liquids, 5th ed.; New York City (NY): The McGraw-Hill Companies, Inc.
  • Pommersheim JM, Ranck BA. 1973. Measurement of gaseous diffusion coefficients using the Stefan cell. Ind Eng Chem Fund. 12(2):246–250. doi:10.1021/i160046a019
  • Prange HD. 2003. Laplace’s law and the alveolus: A misconception of anatomy and a misapplication of physics. Adv Physiol Educ. 27(1):34–40. doi:10.1152/advan.00024.2002
  • Prata AT, Sparrow EM. 1985. Diffusion-driven nonisothermal evaporation. J Heat Transf/Trans Am Soc Mech Eng. 107(1):239–242. doi:10.1115/1.3247384
  • Prata AT, Sparrow EM. 1986. Evaporation of water from a partially filled, cylindrical container to a forced convection air flow. Int J Heat Mass Transf. 29(4):539–547. doi:10.1016/0017-9310(86)90087-6
  • Pratt DM, Brown JR, Hallinan KP. 1998. Thermocapillary effects on the stability of a heated, curved meniscus. J Heat Transf/Trans Am Soc Mech Eng. 120(1):220–226. doi:10.1115/1.2830045
  • Pratt DM, Hallinan KP. 1997. Thermocapillary effects on the wetting characteristics of a heated curved meniscus. J Thermophys Heat Transfer. 11(4):519–525. doi:10.2514/2.6293
  • Pratt DM, Kihm KD. 2003. Binary fluid mixture and thermocapillary effects on the wetting characteristics of a heated curved meniscus. J Heat Transf/Trans Am Soc Mech Eng. 125(5):867–874. doi:10.1115/1.1599372
  • Preiss G, Wayner Jr., PC. 1976. Evaporation from a capillary tube. J Heat Transf/Trans Am Soc Mech Eng. 98(2):178–181. doi:10.1115/1.3450515
  • PubChem® Compound Database. 2019. CID = 3026 (dibutyl phthalate), National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD. https://pubchem.ncbi.nlm.nih.gov/compound/3026.
  • Qin T, Grigoriev RO. 2015. The effect of noncondensables on buoyancy–thermocapillary convection of volatile fluids in confined geometries. Int J Heat Mass Transf. 90:678–688. doi:10.1016/j.ijheatmasstransfer.2015.06.074
  • Qu W, Ma T, Miao J, Wang J. 2002. Effects of radius and heat transfer on the profile of evaporating thin liquid film and meniscus in capillary tubes. Int J Heat Mass Transf. 45(9):1879–1887. doi:10.1016/S0017-9310(01)00296-4
  • Rao M, Lefèvre F, Khandekar S, Bonjour J. 2013. Understanding transport mechanism of a self-sustained thermally driven oscillating two-phase system in a capillary tube. Int J Heat Mass Transf. 65:451–459. doi:10.1016/j.ijheatmasstransfer.2013.05.067
  • Rao SS, Bennett CO. 1966. Radial effects in a Stefan diffusion tube. Ind Eng Chem Fund. 5(4):573–575. doi:10.1021/i160020a027
  • Raoult F-M. 1887. Loi générale des tensions de vapeur des dissolvants. C R Acad Sci Hebd Seances Acad Sci. 104:1430–1433. Retrieved from https://www.biodiversitylibrary.org/item/111954#page/1430/mode/1up.
  • Rayleigh L. 1916. On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side. Lond Edinburgh Dublin Philos Mag J Sci. Sixth Series. 32(192):529–546. doi:10.1080/14786441608635602
  • Reid RC, Sherwood TK. 1958. The properties of gases and liquids: Their estimation and correlation. New York City (NY): McGraw-Hill Book Company, Inc.
  • Renk F, Wayner Jr., PC, Homsy GM. 1978. On the transition between a wetting film and a capillary meniscus. J Colloid Interface Sci. 67(3):408–414. doi:10.1016/0021-9797(78)90229-1
  • Richardson JF. 1959. The evaporation of two-component liquid mixtures. Chem Eng Sci. 10(4):234–242. doi:10.1016/0009-2509(59)80058-0
  • Ross S, Becher P. 1992. The history of the spreading coefficient. J Colloid Interface Sci. 149(2):575–579. doi:10.1016/0021-9797(92)90445-R
  • Rudraiah N, Venkatachalappa M, Subbaraya CK. 1995. Combined surface tension and buoyancy-driven convection in a rectangular open cavity in the presence of a magnetic field. Int J Non-Linear Mech. 30(5):759–770. doi:10.1016/0020-7462(95)00026-K
  • Schatz MF, Neitzel GP. 2001. Experiments on thermocapillary instabilities. Annu Rev Fluid Mech. 33:93–127. doi:10.1146/annurev.fluid.33.1.93
  • Schlichting H. 1955. Boundary layer theory, 1st English ed., Kestin J, German-to-English translator. London (England): Pergamon Press Ltd.
  • Scriven LE, Sternling CV. 1960. The Marangoni effects. Nature 187(4733):186–188. doi:10.1038/187186a0
  • Sefiane K, Snodgrass M, Steinchen A. 2004. Evaporation self-induced Marangoni motion in fed capillaries for volatile liquids in open air. J Non-Equilib Thermodyn. 29(2):177–198. doi:10.1515/JNETDY.2004.011
  • Sherwood TK, Pigford RL, Wilke CR. 1975. Mass transfer. New York City (NY): McGraw-Hill Book Company, Inc.
  • Slattery JC, Mhetar VR. 1997. Unsteady-state evaporation and the measurement of a binary diffusion coefficient. Chem Eng Sci. 52(9):1511–1515. doi:10.1016/S0009-2509(96)00507-6
  • Soltman D, Subramanian V. 2008. Inkjet-printed line morphologies and temperature control of the coffee ring effect. Langmuir 24(5):2224–2231. doi:10.1021/la7026847
  • Stefan J. 1871. Über das Gleichgewicht und die Bewegung, insbesondere die Diffusion von Gasgemengen. Sitzungsberichte der Mathematisch-Naturwissenschaftlichen Classe der Kaiserlichen Akademie der Wissenschaften Wien 63(Abteilung II):63–124. http://www.zobodat.at/publikation_series.php?id=7341.
  • Stefan J. 1890. Ueber die Verdampfung und die Auflösung als Vorgänge der Diffusion. Ann Phys Chem. 277(12):725–747. doi:10.1002/andp.18902771206
  • Sternling CV, Scriven LE. 1959. Interfacial turbulence: Hydrodynamic instability and the Marangoni effect. AIChE J. 5(4):514–523. doi:10.1002/aic.690050421
  • Sujanani M, Wayner Jr., PC. 1992. Transport processes and interfacial phenomena in an evaporating meniscus. Chem Eng Commun. 118(1):89–110. doi:10.1080/00986449208936088
  • Swanson LW, Herdt GC. 1992. Model of the evaporating meniscus in a capillary tube. J Heat Transf/Trans Am Soc Mech Eng. 114(2):434–441. doi:10.1115/1.2911292
  • Szymczyk JA. 1991. Marangoni and buoyant convection in a cylindrical cell under normal gravity. Can J Chem Eng. 69(6):1271–1276. doi:10.1002/cjce.5450690607
  • Tan H, Diddens C, Lv P, Kuerten JGM, Zhang X, Lohse D. 2016. Evaporation-triggered microdroplet nucleation and the four life phases of an evaporating Ouzo drop. Proc Natl Acad Sci USA. 113(31):8642–8647. doi:10.1073/pnas.1602260113
  • Tate T. 1864. On the magnitude of a drop of liquid formed under different circumstances. Lond Edinburgh Dublin Philos Mag J Sci. Fourth Series. 27(181):176–180. doi:10.1080/14786446408643645
  • Taylor GC, Smith R. 1964. Shakespeare’s Macbeth, Interlinear Edition. Boston (MA): Ginn and Company.
  • Teixeira MA, Rodríguez O, Mata VG, Rodrigues AE. 2009. The diffusion of perfume mixtures and the odor performance. Chem Eng Sci. 64(11):2570–2589. doi:10.1016/j.ces.2009.01.064
  • Teixeira MA, Rodríguez O, Rodrigues AE. 2013. Diffusion and performance of fragranced products: Prediction and validation. AIChE J. 59(10):3943–3957. doi:10.1002/aic.14106
  • Thomson J. 1855. On certain curious motions observable at the surfaces of wine and other alcoholic liquors. Lond Edinburgh Dublin Philos Mag J Sci. Fourth Series. 10(67):330–333. doi:10.1080/14786445508641982
  • Touihri R, El Gallaf A, Henry D, Ben Hadid H. 2011a. Instabilities in a cylindrical cavity heated from below with a free surface. I. Effect of Biot and Marangoni numbers. Phys Rev E. 84(5):056302-1–056302-19. doi:10.1103/PhysRevE.84.056302
  • Touihri R, El Gallaf A, Henry D, Ben Hadid H. 2011b. Instabilities in a cylindrical cavity heated from below with a free surface. II. Effect of a horizontal magnetic field. Phys Rev E. 84(5):056303-1–056303-13. doi:10.1103/PhysRevE.84.056303
  • Trautz M, Müller W. 1935. Die Reibung, Wärmeleitung und Diffusion in Gasmischungen XXXIII. Die Korrektion der bisher mit der Verdampfungsmethode gemessenen Diffusionskonstanten. Ann Phys. 414(4):333–352. doi:10.1002/andp.19354140404
  • Treybal RE. 1987. Mass-transfer operations, 3rd ed. (Classic Textbook Reissue). New York City (NY): McGraw-Hill Book Company, Inc.
  • Truong JG, Wayner Jr., PC. 1987. Effects of capillary and van der Waals dispersion forces on the equilibrium profile of a wetting liquid: Theory and experiment. J Chem Phys. 87(7):4180–4188. doi:10.1063/1.452922
  • Tuckermann R. 2007. Surface tension of aqueous solutions of water-soluble organic and inorganic compounds. Atmos Environ. 41(29):6265–6275. doi:10.1016/j.atmosenv.2007.03.051
  • Vaillant P. 1911. Application de l’évaporation à la mesure des coefficients de diffusion. J Phys Theor Appl. 1(1):877–891. doi:10.1051/jphystap:01911001011087700
  • Vargaftik NB. 1975. Handbook of physical properties of liquids and gases: Pure substances and mixtures, 2nd ed.; Washington, DC: Hemisphere Publishing Corporation.
  • Villers D, Platten JK. 1992. Coupled buoyancy and Marangoni convection in acetone: Experiments and comparison with numerical simulations. J Fluid Mech. 234:487–510. doi:10.1017/S0022112092000880
  • Wang H, Murthy JY, Garimella SV. 2008. Transport from a volatile meniscus inside an open microtube. Int J Heat Mass Transf. 51(11-12):3007–3017. doi:10.1016/j.ijheatmasstransfer.2007.09.011
  • Wang H, Pan Z, Garimella SV. 2011. Numerical investigation of heat and mass transfer from an evaporating meniscus in a heated open groove. Int J Heat Mass Transf. 54(13–14):3015–3023. doi:10.1016/j.ijheatmasstransfer.2011.02.047
  • Wayner Jr., PC. 1978. The effect of the London-van der Waals dispersion force on interline heat transfer. J Heat Transf/Trans Am Soc Mech Eng. 100(1):155–159. doi:10.1115/1.3450490
  • Wayner Jr., PC. 1979. Effect of thin film heat transfer on meniscus profile and capillary pressure. AIAA J. 17(7):772–776. doi:10.2514/3.61217
  • Wayner Jr., PC, Coccio CL. 1971. Heat and mass transfer in the vicinity of the triple interline of a meniscus. AIChE J. 17(3):569–574. doi:10.1002/aic.690170317
  • Wayner Jr., PC, Kao YK, LaCroix LV. 1976. The interline heat-transfer coefficient of an evaporating wetting film. Int J Heat Mass Transf. 19(5):487–492. doi:10.1016/0017-9310(76)90161-7
  • Wayner Jr., PC, Tung CY, Tirumala M, Yang JH. 1985. Experimental study of evaporation in the contact line region of a thin film of hexane. J Heat Transf/Trans Am Soc Mech Eng. 107(1):182–189. doi:10.1115/1.3247376
  • Wenzel RN. 1936. Resistance of solid surfaces to wetting. Ind Eng Chem. 28(8):988–994. doi:10.1021/ie50320a024
  • Wenzel RN. 1949. Surface roughness and contact angle. J Phys Chem. 53(9):1466–1467. doi:10.1021/j150474a015
  • Whitaker S. 1964. Effect of surface active agents on the stability of falling liquid films. Ind Eng Chem Fund. 3(2):132–142. doi:10.1021/i160010a009
  • Whitaker S. 1991. Role of the species momentum equation in the analysis of the Stefan diffusion tube. Ind Eng Chem Res. 30(5):978–983. doi:10.1021/ie00053a021
  • Wilke CR, Chang P. 1955. Correlation of diffusion coefficients in dilute solutions. AIChE J. 1(2):264–270. doi:10.1002/aic.690010222
  • Wilke CR, Lee CY. 1955. Estimation of diffusion coefficients for gases and vapors. Ind Eng Chem. 47(6):1253–1257. doi:10.1021/ie50546a056
  • Winkelmann A. 1884a. Ueber die Diffusion von Gasen und Dämpfen. Ann Phys. 258(5):1–31. doi:10.1002/andp.18842580502
  • Winkelmann A. 1884b. Ueber die Diffusion homologer Ester in Luft, Wasserstoff und Kohlensäure. Ann Phys. 259(10):203–227. doi:10.1002/andp.18842591004
  • Winkelmann A. 1885. Ueber die Diffusion der Fettsäuren und Fettalkohole in Luft, Wasserstoff und Kohlensäure. Ann Phys. 262(9):105–134. doi:10.1002/andp.18852620910
  • Yu J, Wang H, Liu X. 2013. Direct measurement of macro contact angles through atomic force microscopy. Int J Heat Mass Transf. 57(1):299–303. doi:10.1016/j.ijheatmasstransfer.2012.10.041
  • Zebib A, Homsy GM, Meiburg E. 1985. High Marangoni number convection in a square cavity. Phys Fluids. 28(12):3467–3476. doi:10.1063/1.865300
  • Zhai L, Berg MC, Cebeci FÇ, Kim Y, Milwid JM, Rubner MF, Cohen RE. 2006. Patterned superhydrophobic surfaces: Toward a synthetic mimic of the Namib Desert beetle. Nano Lett. 6(6):1213–1217. doi:10.1021/nl060644q
  • Zhang J, Behringer RP, Oron A. 2007. Marangoni convection in binary mixtures. Phys Rev E. 76(1):016306-1–016306-7. doi:10.1103/PhysRevE.76.016306
  • Zheng Z, Zhou L, Du X, Yang Y, Jiang P, Wang B. 2015. Numerical investigation on Marangoni convection of binary fluids in a closed microcavity. Appl Thermal Eng. 88:464–472. doi:10.1016/j.applthermaleng.2014.10.018
  • Zuidema HH, Waters GW. 1941. Ring method for the determination of interfacial tension. Ind Eng Chem Anal Ed. 13(5):312–313. doi:10.1021/i560093a009

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.