160
Views
6
CrossRef citations to date
0
Altmetric
Articles

Synthesis and characterization of ternary metallic oxide electrodes containing (SnO2)93Sb5M2 (M = Ce, ta, Bi, Gd) using an ionic liquid as the precursor solvent

, , , &

References

  • Ardizzone S, Bianchi CL, Cappelletti G, Ionita M, Minguzzi A, Rondinini S, Vertova A. 2006. Composite ternary SnO2-IrO2-Ta2O5 oxide electrocatalysts. J Electroanal Chem. 589(1):160–166.
  • Arenas LF, Ponce de León C, Walsh FC. 2016. Electrochemical redox processes involving soluble cerium species. Electrochim Acta. 205:226–247.
  • Audichon T, Mayousse E, Morisset S, Morais C, Comminges C, Napporn TW, Kokoh KB. 2014. Electroactivity of RuO2-IrO2 mixed nanocatalysts toward the oxygen evolution reaction in a water electrolyzer supplied by a solar profile. Inter J Hydrogen Energy. 39(30):16785–16796.
  • Berenguer R, Sieben JM, Quijada C, Morallón E. 2014. Pt- and Ru-doped SnO₂-Sb anodes with high stability in alkaline medium. ACS Appl Mater Interfaces. 6(24):22778–22789.
  • Carlesi Jara C, Salazar-Banda GR, Arratia RS, Campino JS, Aguilera MI. 2011. Improving the stability of Sb doped Sn oxides electrode thermally synthesized by using an acid ionic liquid as solvent. Chem Eng J. 171(3):1253–1262.
  • Chaiyont R, Badoe C, Ponce de León C, Nava JL, Recio FJ, Sirés I, Herrasti P, Walsh FC. 2013. Decolorization of methyl orange dye at IrO2-SnO2-Sb2O5 coated titanium anodes. Chem Eng Technol. 36(1):123–129.
  • Coleman D, Gathergood N. 2010. Biodegradation studies of ionic liquid. Chemical Society Reviews. 39:600–637.
  • Coledam D, Pupo MMS, Silva BF, Silva A, Eguiluz KIB, Salazar-Banda GR, Aquino JM. 2017. Electrochemical mineralization of cephalexin using a conductive diamond anode: A mechanistic and toxicity investigation. Chemosphere. 168:638–647.
  • Cui YH, Feng YJ, Liu ZQ. 2009. Influence of rare earths doping on the structure and electro-catalytic performance of Ti/Sb–SnO2 electrodes. Electrochim Acta. 54(21):4903–4909.
  • Da Silva LM, De Faria LA, Boodts JFC. 2001. Determination of the morphology factor of oxide layers. Electrochim Acta. 47(3):395–403.
  • Da Silva LM, Santos GOS, Pupo MMS, Eguiluz KIB, Salazar-Banda GR. 2018. Influence of heating rate on the physical and electrochemical properties of mixed metal oxides anodes synthesized by thermal decomposition method applying an ionic liquid. J Electroanal Chem. 813:127–133.
  • Del Río AI, Fernández J, Molina J, Bonastre J, Cases F. 2010. On the behaviour of doped SnO2 anodes stabilized with platinum in the electrochemical degradation of reactive dyes. Electrochim Acta. 55(24):7282–7289.
  • Ding H-Y, Feng YJ, Lu JW. 2010. Study on the service life and deactivation mechanism of Ti/SnO2-Sb electrode by physical and electrochemical methods. Russ J Electrochem. 46(1):72–76.
  • Djebbar KE, Zertal A, Debbache N, Sehili T. 2008. Comparison of Diuron degradation by direct UV photolysis and advanced oxidation processes. J Environ Manage. 88(4):1505–1512.
  • Dong W, Xie X, Jia J, Du H, Zhong L, Liang Z, Han P. 2014. Theoretical calculation and experimental study on the conductivity and stability of Bi-doped SnO2 electrode. Electrochim Acta. 132:307–314.
  • Duan T, Chen Y, Wen Q, Duan Y. 2015. Different mechanisms and electrocatalytic activities of Ce ion or CeO2 modified Ti/Sb–SnO2 electrodes fabricated by one-step pulse electro-codeposition. RSC Adv. 5(25):19601–19612.
  • Duan T, Wen Q, Chen Y, Zhou Y, Duan Y. 2014. Enhancing electrocatalytic performance of Sb-doped SnO2 electrode by compositing nitrogen-doped graphene nanosheets. J Hazardous Mater. 280:304–314.
  • Fathollahi F, Javanbakht M, Norouzi P, Reza M. 2011. Comparison of morphology, stability and electrocatalytic. Russ J Electrochem. 47(11):1281–1286.
  • Feng Y, Cui Y, Logan B, Liu Z. 2008. Performance of Gd-doped Ti-based Sb-SnO2 anodes for electrochemical destruction of phenol. Chemosphere. 70(9):1629–1636.
  • Feng YJ, Li XY. 2003. Electro-catalytic oxidation of phenol on several metal-oxide electrodes in aqueous solution. Water Res. 37(10):2399–2407.
  • Gebicki J. 2010. Influence of vacuum sublimation deposited metal layer thickness on metrological parameters of the amperometric gas sensor with nafion membrane. Sens Lett. 8:829–837.
  • Gonçalves IC, Santos WTP, Franco DV, Da Silva LM. 2014. Fabrication and characterization of oxide fine-mesh electrodes composed of Sb-SnO2 and study of oxygen evolution from the electrolysis of electrolyte-free water in a solid polymer electrolyte filter-press cell: possibilities for the combustion of organic pollutants. Electrochim Acta. 121:1–14.
  • Gordon CM. 2001. New developments in catalysis using ionic liquids. Appl Catal A: Gen. 222(1–2):101–117.
  • Li X, Shao D, Xu H, Lv W, Yan W. 2016. Fabrication of a stable Ti/TiOxHy/Sb − SnO2 anode for aniline degradation in different electrolytes. Chem Eng J. 285:1–10.
  • Lin H, Niu J, Ding S, Zhang L. 2012. Electrochemical degradation of perfluorooctanoic acid (PFOA) by Ti/SnO2–Sb, Ti/SnO2–Sb/PbO2 and Ti/SnO2–Sb/MnO2 anodes. Water Res. 46(7):2281–2289.
  • Liu Y, Liu H, Ma J, Li J. 2012. Preparation and electrochemical properties of Ce–Ru–SnO2 ternary oxide anode and electrochemical oxidation of nitrophenols. J Hazard Mater. 213–214:222–229.
  • Luo Y, Guo W, Ngo HH, Nghiem LD, Hai FI, Zhang J, Wang XC. 2014. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci Total Environ. 473–474:619–641.
  • Malpass GRP, Neves RS, Motheo AJ. 2006. A comparative study of commercial and laboratory-made Ti/Ru0.3Ti0.7O2 DSA electrodes: “In situ” and “ex situ” surface characterisation and organic oxidation activity. Electrochim Acta. 52(3):936–944.
  • Martins TS, Hewer TLR, Freire RS. 2007. Cério: propriedades catalíticas, aplicações tecnológicas e ambientais. Quím Nova. 30(8):2001–2006.
  • Ni Q, Kirk DW, Thorpe SJ. 2015. Characterization of the mixed oxide layer structure of the Ti/SnO2-Sb2O5 anode by photoelectron spectroscopy and impedance spectroscopy. J Electrochem Soc. 162(1):H40–H46.
  • Niedermeyer H, Hallett JP, Villar-Garcia IJ, Hunt PA, Welton T. 2012. Mixtures of ionic liquids. Chem Soc Rev. 41(23):7780–7802.
  • Olivier-Bourbigou H, Magna L, Morvan D. 2010. Ionic liquids and catalysis: recent progress from knowledge to applicatoins. Appl Catal A: Gen. 373(1–2):1–56.
  • Oturan N, Trajkovska S, Oturan MA, Couderchet M, Aaron JJ. 2008. Study of the toxicity of and its metabolites formed in aqueous medium during application of the electrochemical advanced oxidation process “electro-Fenton. Chemosphere. 73(9):1550–1556.
  • Petrović MM, Mitrović JZ, Antonijević MD, Matović B, Bojić DV, Bojić AL. 2015. Synthesis and characterization of new Ti–Bi2O3 anode and its use for reactive dye degradation. Mater Chem Phys. 158:31–37.
  • Pipi ARF, Neto SA, De Andrade AR. 2013. Electrochemical degradation of in chloride medium using DSA based anodes. J Braz Chem Soc. 24:1259–1266.
  • Piro NA, Robinson JR, Walsh PJ, Schelter EJ. 2014. The electrochemical behavior of cerium(III/IV) complexes: thermodynamics, kinetics and applications in synthesis. Coord Chem Rev. 260:21–36.
  • Pupo MMS, Costa LS, Figueiredo AC, Silva RS, Cunha FGC, Eguiluz KIB, Salazar-Banda GR. 2013. Photoelectrocatalytic degradation of indanthrene blue dye using Ti/Ru-based electrodes prepared by a modified Pechini method. J Braz Chem Soc. 24(3):459–472.
  • Rao ANS, Venkatarangaiah VT. 2014. Metal oxide-coated anodes in wastewater treatment. Environ Sci Pollut Res. 21:3197–3217.
  • Rodrigues ECP, Olivi P. 2003. Preparation and characterization of Sb-doped SnO2 films with controlled stoichiometry from polymeric precursors. J Phys Chem Sol. 64(7):1105–1112.
  • Rufino ÉCG, Faria L. A D, Silva L. M D. 2011. Influência das condições de resfriamento sobre as propriedades superficiais e eletroquímicas de anodos dimensionalmente estáveis. Quím Nova. 34(2):200–205.
  • Sales Solano AM, Costa de Araújo CK, Vieira de Melo J, Peralta-Hernandez JM, Ribeiro da Silva D, Martínez-Huitle CA. 2013. Decontamination of real textile industrial effluent by strong oxidant species electrogenerated on diamond electrode: viability and disadvantages of this electrochemical technology. Appl Catal B: Environ. 130–131:112–120.
  • Santos MO, Santos GOS, Mattedi S, Griza S, Eguiluz KIB, Salazar-Banda GR. 2018. Influence of the calcination temperature and ionic liquid used during synthesis procedure on the physical and electrochemical properties of Ti/(RuO2)0.8–(Sb2O4)0.2 anodes. J Electroanal Chem. 829:116–128.
  • Santos GOS, Silva LRA, Alves YGS, Silva RS, Eguiluz KIB, Salazar-Banda GR. 2019. Enhanced stability and electrocatalytic properties of Ti/RuxIr1−xO2 anodes produced by a new laser process. Chem Eng J. 355:439–447.
  • Santos TÉS, Silva RS, Eguiluz KIB, Salazar-Banda GR. 2015. Development of Ti/(RuO2)0.8(MO2)0.2 (M=Ce, Sn or Ir) anodes for atrazine electro-oxidation. Influence of the synthesis method. Mater Lett. 146:4–8.
  • Särkkä H, Bhatnagar A, Sillanpää M. 2015. Recent developments of electro-oxidation in water treatment – A Review. J Electroanal Chem. 754:46–56.
  • Shao D, Li X, Xu H, Yan W. 2014. An improved stable Ti/Sb–SnO2 electrode with high performance in electrochemical oxidation. RSC Adv. 4(41):21230–21237.
  • Shao D, Yan W, Li X, Yang H, Xu H. 2014. A highly stable Ti/TiHx/Sb − SnO2 anode: preparation, characterization and application. Ind Eng Chem Res. 53(10):3898–3907.
  • Shestakova M, Bonete P, Gómez R, Sillanpää M, Tang WZ. 2014. Novel Ti/Ta2O5-SnO2 electrodes for water electrolysis and electrocatalytic oxidation of organics. Electrochim Acta. 120:302–307.
  • Shmychkova O, Luk’yanenko T, Velichenko A, Meda L, Amadelli R. 2013. Bi-doped PbO2 anodes: electrodeposition and physico-chemical properties. Electrochim Acta. 111:332–338.
  • Silvester DS. 2011. Recent advances in the use of ionic liquids for electrochemical sensing. Analyst. 136(23):4871–4882.
  • Song S, Fan J, He Z, Zhan L, Liu Z, Chen J, Xu X. 2010. Electrochemical degradation of azo dye C.I. Reactive Red 195 by anodic oxidation on Ti/SnO2-Sb/PbO2 electrodes. Electrochim Acta. 55(11):3606–3613.
  • Song J-M, Mao C-J, Niu H-L, Shen Y-H, Zhang S-Y. 2010. Hierarchical structured bismuth oxychlorides: Self-assembly from nanoplates to nanoflowers via a solvothermal route and their photocatalytic properties. Cryst Eng Comm. 12(11):3875.
  • Sun Z, Zhang H, Wei X, Ma X, Hu X. 2015. Preparation and electrochemical properties of SnO2-Sb-Ni-Ce oxide anode for phenol oxidation. J Solid State Electrochem. 19(8):2445–2456.
  • Wang Y, Hu B, Hu C, Zhou X. 2015. Fabrication of a novel Ti/SnO2–Sb–CeO2@TiO2–SnO2 electrode and photoelectrocatalytic application in wastewater treatment. Mater Sci Semicond Proc. 40:744–751.
  • Wasserscheid P, Keim W. 2000. Ionic Liquids-New "Solutions" for Transition Metal Catalysis. Angew Chem Int Ed Engl. 39(21):3772–3789.
  • Woldemedhin MT, Raabe D, Hassel AW. 2012. Characterization of thin anodic oxides of Ti-Nb alloys by electrochemical impedance spectroscopy. Electrochim Acta. 82:324–332.
  • Wu W, Huang Z-H, Lim T-T. 2014. Recent development of mixed metal oxide anodes for electrochemical oxidation of organic pollutants in water. Appl Catal A: General. 480:58–78.
  • Xiaohong W, Wei Q, Weidong H. 2007. Thin bismuth oxide films prepared through the sol-gel method as photocatalyst. J Mol Catal A: Chem. 261(2):167–171.
  • Xu L, Song X. 2015. A novel Ti/antimony-doped tin oxide nanoparticles electrode prepared by screen printing method and its application in electrochemical degradation of C.I. Acid Red 73. Electrochim Acta. 185:6–16.
  • Zhang Q, Liu Y, Zeng D, Lin J, Liu W. 2011. The effect of Ce doped in Ti/SnO2-Sb2O3/SnO2-Sb2O3-CeO2 electrode and its electro-catalytic performance in caprolactam wastewater. Water Sci Technol. 64:10–15.
  • Zhang L, Xu L, He J, Zhang J. 2014. Preparation of Ti/SnO2-Sb electrodes modified by carbon nanotube for anodic oxidation of dye wastewater and combination with nanofiltration. Electrochim Acta. 117:192–201.
  • Zhang YM, Yang S, Evans JRG. 2008. Revisiting Hume-Rothery’s rules with artificial neural networks. Acta Mater. 56(5):1094–1105.
  • Zhu MW, Wang ZJ, Chen YN, Kobayashi T, Maeda R. 2013. Effect of heating rate on microstructure and electrical properties of sol–gel derived lead zirconate titanate films crystallized by rapid thermal annealing. Thin Solid Films. 540:73–78.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.