114
Views
9
CrossRef citations to date
0
Altmetric
Research Article

The symbiotic effect of integrated Muraya koenigii extract and surface-modified magnetic microspheres – a green biosorbent for the removal of Cu(II) and Cr(VI) ions from aqueous solutions

, &

References

  • Abdelrahman EA, Hegazey RM. 2019. Exploitation of Egyptian insecticide cans in the fabrication of Si/Fe nanostructures and their chitosan polymer composites for the removal of Ni(II), Cu(II), and Zn(II) ions from aqueous solutions. Composites B Eng. 166:382–400. doi:10.1016/j.compositesb.2019.02.027
  • Bhaumik M, Maity A, Srinivasu VV, Onyango MS. 2011. Enhanced removal of Cr(VI) from aqueous solution using polypyrrole/Fe3O4 magnetic nanocomposite. J Haz Mater. 190(1-3):381–390. doi:10.1016/j.jhazmat.2011.03.062
  • Boparai HK, Joseph M, Carroll DMO. 2011. Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J Haz Mater. 186(1):458–465. doi:10.1016/j.jhazmat.2010.11.029
  • Brusotti G, Cesari I, Dentamaro A, Caccialanza G, Massolini G. 2014. Isolation and characterization of bioactive compounds from plant resources: the role of analysis in the ethnopharmacological approach. J Pharmac Biomed Anal. 87:218–228. doi:10.1016/j.jpba.2013.03.007
  • Chávez-Guajardo AE, Medina-Llamas JC, Maqueira L, Andrade CAS, Alves KGB, de Melo CP. 2015. Efficient removal of Cr (VI) and Cu (II) ions from aqueous media by use of polypyrrole/maghemite and polyaniline/maghemite magnetic nanocomposites. Chem Eng J. 281:826–836. doi:10.1016/j.cej.2015.07.008
  • Chen Y, Song YF. 2013. Highly selective and efficient removal of Cr(VI) and Cu(II) by the chromotropic acid-intercalated Zn-Al layered double hydroxides. Ind Eng Chem Res. 52(12):4436–4442. doi:10.1021/ie400108t
  • Deng YH, Wang CC, Hu JH, Yang WL, Fu SK. 2005. Investigation of formation of silica-coated magnetite nanoparticles via sol-gel approach. Colloids Surf A Physicochem Eng Asp. 262(1-3):87–93. doi:10.1016/j.colsurfa.2005.04.009
  • Feng G, Ma J, Zhang X, Zhang Q, Xiao Y, Ma Q, Wang S. 2019. Magnetic natural composite Fe3O4-chitosan@bentonite for removal of heavy metals from acid mine drainage. J Colloid Interface Sci. 538:132–141. doi:10.1016/j.jcis.2018.11.087
  • Gnanasekaran R, Dhandapani B, Saravanan A. 2018. Biosorption of methylene blue dye by chemically modified Aspergillus japonicus MG183814: kinetics, thermodynamic and equilibrium studies. Desalin Water Treat. 122:132–145. doi:10.5004/dwt.2018.22711
  • Guo Y, Guo H, Wang Y, Liu L, Chen W. 2014. Designed hierarchical MnO2 microspheres assembled from nanofilms for removal of heavy metal ions. RSC Adv. 4(27):14048–14054. doi:10.1039/C4RA01044B
  • Gupta D, Kumar M, Gupta V. 2018. An in vitro investigation of antimicrobial efficacy of euphorbia hirta and Murraya koenigii against selected pathogenic microorganisms. Asian J Pharm Clin Res. 11(5):359. doi:10.22159/ajpcr.2018.v11i5.24578
  • Helen Kalavathy M, Miranda LR. 2010. Moringa oleifera – a solid phase extractant for the removal of copper, nickel and zinc from aqueous solutions. Chem Eng J. 158(2):188–199. doi:10.1016/j.cej.2009.12.039
  • Jalayeri H, Pepe F. 2019. Novel and high-performance biochar derived from pistachio green hull biomass: production, characterization, and application to Cu(II) removal from aqueous solutions. Ecotoxicol Environ Saf. 168:64–71. doi:10.1016/j.ecoenv.2018.10.058
  • Jesionowski T, Zdarta J, Krajewska B. 2014. Enzyme immobilization by adsorption: a review. Adsorption. 20(5-6):801–821. doi:10.1007/s10450-014-9623-y
  • Ji J, Chen G, Zhao J. 2019. Preparation and characterization of amino/thiol bifunctionalized magnetic nanoadsorbent and its application in rapid removal of Pb (II) from aqueous system. J Haz Mater. 368:255–263. doi:10.1016/j.jhazmat.2019.01.035
  • Jiang TF, Lv ZH, Wang YH. 2005. Separation and determination of chalcones from Carthamus tinctorius L. and its medicinal preparation by capillary zone electrophoresis. J Sep Sci. 28(11):1244–1247. doi:10.1002/jssc.200500001
  • Kalavathy MH, Karthikeyan T, Rajgopal S, Miranda LR. 2005. Kinetic and isotherm studies of Cu(II) adsorption onto H3PO 4-activated rubber wood sawdust. J Colloid Interf Sci. 292(2):354–362. doi:10.1016/j.jcis.2005.05.087
  • Kumar VV, Sivanesan S, Cabana H. 2014. Magnetic cross-linked laccase aggregates – bioremediation tool for decolorization of distinct classes of recalcitrant dyes. Sci Total Environ. 487(1):830–839. doi:10.1016/j.scitotenv.2014.04.009
  • Li Y, Ali N, Yao H, Zheng N, Khan S. 2018. Influence of biochars on the accessibility of organochlorine pesticides and microbial community in contaminated soils. Sci Total Environ. 647:551–560. doi:10.1016/j.scitotenv.2018.07.425
  • Lu AH, Salabas EL, Schüth F. 2007. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed. 46(8):1222–1244. doi:10.1002/anie.200602866
  • Massironi A, Morelli A, Grassi L, Puppi D, Braccini S, Maisetta G, Esin S, Batoni G, Della Pina C, Chiellini F. 2019. Ulvan as novel reducing and stabilizing agent from renewable algal biomass: application to green synthesis of silver nanoparticles. Carbohydr Polym. 203:310–321. doi:10.1016/j.carbpol.2018.09.066
  • Mohammadi P, Sheibani H. 2018. Green synthesis of Fe3O4@SiO2-Ag magnetic nanocatalyst using safflower extract and its application as recoverable catalyst for reduction of dye pollutants in water. Appl Organometal Chem. 32(4):e4249. doi:10.1002/aoc.4249
  • Pellera F, Giannis A, Kalderis D, Anastasiadou K, Stegmann R, Wang J, Gidarakos E. 2012. Adsorption of Cu (II) ions from aqueous solutions on biochars prepared from agricultural by-products. J Environ Manage. 96(1):35–42. doi:10.1016/j.jenvman.2011.10.010
  • Philip D, Unni C, Aromal SA, Vidhu VK. 2011. Murraya Koenigii leaf-assisted rapid green synthesis of silver and gold nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc. 78(2):899–904. doi:10.1016/j.saa.2010.12.060
  • Qazi UY, Javaid R. 2016. A review on metal nanostructures: preparation methods and their potential applications. Adv Nanopart. 05(01):27–43. doi:10.4236/anp.2016.51004
  • Reza RT, Pérez CAM, González CAR, Romero HM, Casillas PEG. 2010. Effect of the polymeric coating over Fe3O4 particles used for magnetic separation. Central Eur J Chem. 8(5):1041–1046. 10.2478/s11532-010-0073-4.
  • Sahraei R, Ghaemy M. 2017. Synthesis of modified gum tragacanth/graphene oxide composite hydrogel for heavy metal ions removal and preparation of silver nanocomposite for antibacterial activity. Carbohydr Polym. 157:823–833. doi:10.1016/j.carbpol.2016.10.059
  • Sarma GK, Sen Gupta S, Bhattacharyya KG. 2019. Nanomaterials as versatile adsorbents for heavy metal ions in water: a review. Environ Sci Pollut Res. 26(7):6245–6278. doi:10.1007/s11356-018-04093-y
  • Sikder MT, Mihara Y, Islam MS, Saito T, Tanaka S, Kurasaki M. 2014. Preparation and characterization of chitosan-carboxymethyl-β-cyclodextrin entrapped nano zero-valent iron composite for Cu (II) and Cr (IV) removal from wastewater. Chem Eng J. 236:378–387. doi:10.1016/j.cej.2013.09.093
  • Singh Yadava O, Kumar S, Kaur G. 2014. Synthesis, characterization and investigation of schiff base as a corrosion inhibitor for mild steel in H2So4 medium. Heterocycl Lett. 4(2):287–293.
  • Soltani H, Belmokhtar A, Zeggai FZ, Benyoucef A, Bousalem S, Bachari K. 2019. Copper(II) removal from aqueous solutions by PANI-clay hybrid material: fabrication, characterization, adsorption and kinetics study. J Inorg Organomet Polym. 29(3):841–850. doi:10.1007/s10904-018-01058-z
  • Soundappan K, Bajaj R, Vaidya BN, Joshee N. 2018. Anatomical and biochemical investigations on medicinal tree Murraya. Journal of Biotech Research. 9:70–78.
  • Sun X, Yang L, Li Q, Zhao J, Li X, Wang X, Liu H. 2014. Amino-functionalized magnetic cellulose nanocomposite as adsorbent for removal of Cr(VI): synthesis and adsorption studies. Chem Eng J. 241:175–183. doi:10.1016/j.cej.2013.12.051
  • Vishnu D, Neeraj G, Swaroopini R, Shobana R, Kumar VV, Cabana H. 2017. Synergetic integration of laccase and versatile peroxidase with magnetic silica microspheres towards remediation of biorefinery wastewater. Environ Sci Pollut Res. 24(22):17993–18009. doi:10.1007/s11356-017-9318-5
  • Wang J, Zheng S, Shao Y, Liu J, Xu Z, Zhu D. 2010. Amino-functionalized Fe3O4@SiO2 core-shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal. J Colloid Interf Sci. 349(1):293–299. doi:10.1016/j.jcis.2010.05.010
  • Weng X, Wu J, Ma L, Owens G, Chen Z. 2019. Impact of synthesis conditions on Pb(II) removal efficiency from aqueous solution by green tea extract reduced graphene oxide. Chem Eng J. 359:976–981. doi:10.1016/j.cej.2018.11.089
  • Xiao F, Cheng J, Cao W, Yang C, Chen J, Luo Z. 2019. Removal of heavy metals from aqueous solution using chitosan-combined magnetic biochars. J Colloid Interf Sci. 540:579–584. doi:10.1016/j.jcis.2019.01.068
  • Yi Y, Tsang PE, Fang Z, Tu G, Xiao S. 2019. Green synthesis of iron-based nanoparticles from extracts of Nephrolepis auriculata and applications for Cr(VI) removal. Mater Lett. 234(Vi):388–391. doi:10.1016/j.matlet.2018.09.137
  • Zhang W, Shi X, Zhang Y, Gu W, Li B, Xian Y. 2013. Synthesis of water-soluble magnetic graphene nanocomposites for recyclable removal of heavy metal ions. J Mater Chem A. 1(5):1745–1753. doi:10.1039/c2ta00294a.
  • Zou Y, Wang X, Khan A, Wang P, Liu Y, Alsaedi A, Hayat T, Wang X. 2016. Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: a review. Environ Sci Technol. 50(14):7290–7304. doi:10.1021/acs.est.6b01897

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.