1,062
Views
30
CrossRef citations to date
0
Altmetric
Review Articles

A review on electrochemical treatment of arsenic from aqueous medium

&

References

  • Abhyankar LN, Jones M.R, Guallar E, Navas-Acien A. 2012. Arsenic exposure and hypertension: a systematic review. Environ Health Perspect. 120(4):494–500. doi:10.1289/ehp.1103988
  • Ahmed S, Khoda SMe, Rekha RS, Gardner RM, Ameer SS, Moore S, Ekström EC, Vahter M, Raqib R. 2011. Arsenic-associated oxidative stress, inflammation, and immune disruption in human placenta and cord blood. Environ Health Perspect. 119(2):258–264. doi:10.1289/ehp.1102086
  • Ali I, Al-Othman ZA, Alwarthan A, Asim M, Khan TA. 2014. Removal of arsenic species from water by batch and column operations on bagasse fly ash. Environ Sci Pollut Res. 21(5):3218–3229. doi:10.1007/s11356-013-2235-3
  • Ali I, Asim M, Khan TA. 2013. Arsenite removal from water by electro-coagulation on zinc-zinc and copper-copper electrodes. Int J Environ Sci Technol. 10(2):377–384. doi:10.1007/s13762-012-0113-z
  • Ali I, Basheer AA, Mbianda XY, Burakov A, Galunin E, Burakova I, Mkrtchyan E, Tkachev A, Grachev V. 2019. Graphene based adsorbents for remediation of noxious pollutants from wastewater. Environ Int. 127:160–180. doi:10.1016/j.envint.2019.03.029
  • Ali I, Jain CK. 2004. Advances in arsenic speciation techniques. Int J Environ Anal Chem. 84(12):947–964. doi:10.1080/03067310410001729637
  • Ali I, Khan TA, Asim M. 2011. Removal of arsenic from water by electrocoagulation and electrodialysis techniques. Sep Purif Rev. 40(1):25–42. doi:10.1080/15422119.2011.542738
  • Ali I, Khan TA, Asim M. 2012. Removal of arsenate from groundwater by electrocoagulation method. Environ Sci Pollut Res. 19(5):1668–1676. doi:10.1007/s11356-011-0681-3
  • An C, Huang G, Yao Y, Zhao S. 2017. Emerging usage of electrocoagulation technology for oil removal from wastewater: a review. Sci Total Environ. 579:537–556. doi:10.1016/j.scitotenv.2016.11.062
  • Anderson MA, Cudero AL, Palma J. 2010. Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete? Electrochim Acta. 55(12):3845–3856. doi:10.1016/j.electacta.2010.02.012
  • Andrade L.S, Tasso T.T, da Silva D.L, Rocha-Filho R.C, Bocchi N, Biaggio S.R. 2009. On the performances of lead dioxide and boron-doped diamond electrodes in the anodic oxidation of simulated wastewater containing the Reactive Orange 16 dye. Electrochim Acta. 54(7):2024–2030. doi:10.1016/j.electacta.2008.08.026
  • Aswathy P, Gandhimathi R, Ramesh ST, Nidheesh PV. 2016. Removal of organics from bilge water by batch electrocoagulation process. Sep Purif Technol. 159:108–115. doi:10.1016/j.seppur.2016.01.001
  • Babu DS, Srivastava V, Nidheesh PV, Kumar MS. 2019. Detoxification of water and wastewater by advanced oxidation processes. Sci Total Environ. 696:133961. doi:10.1016/j.scitotenv.2019.133961
  • Bahar MM, Megharaj M, Naidu R. 2012. Arsenic bioremediation potential of a new arsenite-oxidizing bacterium Stenotrophomonas sp. MM-7 isolated from soil. Biodegradation. 23(6):803–812. doi:10.1007/s10532-012-9567-4
  • Bain EJ, Calo JM, Spitz-Steinberg R, Kirchner J, Axén J. 2010. Electrosorption/electrodesorption of arsenic on a granular activated carbon in the presence of other heavy metals. Energy Fuels. 24:3415–3421. doi:10.1021/ef901542q
  • Basheer AA. 2018. Chemical chiral pollution: Impact on the society and science and need of the regulations in the 21 st century. Chirality. 30(4):402–406. doi:10.1002/chir.22808
  • Bayramoglu M, Eyvaz M, Kobya M. 2007. Treatment of the textile wastewater by electrocoagulation economical evaluation. Chem Eng J. 128:155–161. doi:10.1016/j.cej.2006.10.008
  • Beolchini F, Pagnanelli F, De Michelis I, Vegliò F. 2007. Treatment of concentrated arsenic(V) solutions by micellar enhanced ultrafiltration with high molecular weight cut-off membrane. J Hazard Mater. 148(1–2):116–121. doi:10.1016/j.jhazmat.2007.02.031
  • Bernabe B, Sa J, Santander P, Basa L. 2015. Electrochemical oxidation and removal of arsenic using water-soluble polymers. J Appl Electrochem. 45:151–159. doi:10.1007/s10800-014-0785-9
  • Bersier PM, Walsh FC, Ponce de León C. 2009. Electrochemical approaches to environmental treatment and recycling. Encycl Life Support Syst. II:340–381.
  • Bina B, Ebrahimi A, Hesami F, Amin M. 2013. Arsenic removal by coagulation using ferric chloride and chitosan from water. Int J Env Health Eng. 2(1):17. doi:10.4103/2277-9183.110170
  • BIS. 2012. Indian Standard Drinking Water Specification (Second Revision). India: Bureau of Indian Standards.
  • Bissen M, Frimmel FH. 2003. Arsenic - A review. Part I: Occurrence, toxicity, speciation, mobility. Acta Hydrochim Hydrobiol. 31(1):9–18. doi:10.1002/aheh.200390025
  • Boye B, Michaud P-A, Marselli B, Dieng MM, Brillas E, Comninellis C. 2002. Anodic oxidation of 4-chlorophenoxyacetic acid on synthetic boron-doped diamond electrodes. New Diam Front Carbon Technol. 12:63–72.
  • Brillas E, Sirés I, Arias C, Cabot PL, Centellas F, Rodríguez RM, Garrido JA. 2005. Mineralization of paracetamol in aqueous medium by anodic oxidation with a boron-doped diamond electrode. Chemosphere. 58(4):399–406. doi:10.1016/j.chemosphere.2004.09.028
  • Brillas E, Sirés I, Oturan MA. 2009. Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem Rev. 109(12):6570–6631. doi:10.1021/cr900136g
  • Cañizares P, Jiménez C, Martínez F, Sáez C, Rodrigo MA. 2007. Study of the electrocoagulation process using aluminum and iron electrodes. Ind Eng Chem Res. 46(19):6189–6195. doi:10.1021/ie070059f
  • Carter KE, Farrell J. 2009. Electrochemical oxidation of trichloroethylene using boron-doped diamond film electrodes. Environ Sci Technol. 43(21):8350–8354. doi:10.1021/es9017738
  • Catherino HA. 1967. Electrochemical oxidation of arsenic(III). A consecutive electron-transfer reaction. J Phys Chem. 71(2):268–274. doi:10.1021/j100861a010
  • Chen Y, Graziano J.H, Parvez F, Liu M, Slavkovich V, Kalra T, Argos M, Islam T, Ahmed A, Rakibuz-Zaman M, et al. 2011. Arsenic exposure from drinking water and mortality from cardiovascular disease in Bangladesh: prospective cohort study. BMJ. 342:d2431–d2431. doi:10.1136/bmj.d2431
  • Christen K. 2006. Desalination technology could clean up wastewater from coal-bed methane production. Environ Sci Technol. 40(3):639–639. doi:10.1021/es062630s
  • Comninellis C. 1994. Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment. Electrochim Acta. 39(11–12):1857–1862. doi:10.1016/0013-4686(94)85175-1
  • Davis CC, Knocke WR, Edwards M. 2001. Implications of aqueous silica sorption to iron hydroxide: Mobilization of iron colloids and interference with sorption of arsenate and humic substances. Environ Sci Technol. 35(15):3158–3162. doi:10.1021/es0018421
  • Del Razo LM, García-Vargas GG, Valenzuela OL, Castellanos EH, Sánchez-Peña LC, Currier JM, Drobná Z, Loomis D, Stýblo M. 2011. Exposure to arsenic in drinking water is associated with increased prevalence of diabetes: a cross-sectional study in the Zimapán and Lagunera regions in Mexico. Environ Heal. 10:73. doi:10.1186/1476-069X-10-73.
  • Du Z, Li H, Gu T. 2007. A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnol Adv. 25:464–482. 10.1016/j.biotechadv.2007.05.004.
  • Duker AA, Carranza EJM, Hale M. 2005. Arsenic geochemistry and health. Environ Int. 31(5):631–641. doi:10.1016/j.envint.2004.10.020
  • Ettinger AS, Zota AR, Amarasiriwardena CJ, Hopkins MR, Schwartz J, Hu H, Wright RO. 2009. Maternal arsenic exposure and impaired glucose tolerance during pregnancy. Environ Health Perspect. 117(7):1059–1064. doi:10.1289/ehp.0800533
  • Falkenmark M. 2013. Growing water scarcity in agriculture: future challenge to global water security. Proc R Soc A. 371(2002):20120410. doi:10.1098/rsta.2012.0410
  • Fan C, Tseng S, Li K, Hou C. 2016. Electro-removal of arsenic (III) and arsenic (V) from aqueous solutions by capacitive deionization. J Hazard Mater. 312:208–215. doi:10.1016/j.jhazmat.2016.03.055
  • Fan CS, Liou SYH, Hou CH. 2017. Capacitive deionization of arsenic-contaminated groundwater in a single-pass mode. Chemosphere. 184:924–931. doi:10.1016/j.chemosphere.2017.06.068
  • Farmer JC, Bahowick SM, Harrar JE, Fix DV, Martinelli RE, Vu AK, Carroll KL. 1997. Electrosorption of chromium ions on carbon aerogel electrodes as a means of remediating ground water. Energy Fuels. 11:337–347. doi:10.1021/ef9601374
  • Feng C-H, Li F-B, Mai H-J, Li X-Z. 2010. Bio-electro-fenton process driven by microbial fuel cell for wastewater treatment. Environ Sci Technol. 44(5):1875–1880. doi:10.1021/es9032925
  • Feng Y, Yang L, Liu J, Logan BE. 2016. Electrochemical technologies for wastewater treatment and resource reclamation. Environ Sci: Water Res Technol. 2(5):800–831. doi:10.1039/C5EW00289C
  • Feng YJ, Li X. 2003. Electro-catalytic oxidation of phenol on several metal-oxide electrodes in aqueous solution. Water Res. 37(10):2399–2407. doi:10.1016/S0043-1354(03)00026-5
  • Fito J, Tefera N, Kloos H, Van Hulle S.W.H. 2019. Physicochemical properties of the sugar industry and ethanol distillery wastewater and their impact on the environment. Sugar Tech. 21(2):265–277. doi:10.1007/s12355-018-0633-z
  • Flores OJ, Nava JL, Carreno G. 2014. Arsenic removal from groundwater by electrocoagulation process in a filter-press-type FM01-LC reactor. Int J Electrochem Sci. 9:6658–6667. doi:10.1016/j.ces.2013.04.029
  • Flores OJ, Nava JL, Carreño G, Elorza E, Martínez F. 2013. Arsenic removal from groundwater by electrocoagulation in a pre-pilot-scale continuous filter press reactor. Chem Eng Sci. 97:1–6. doi:10.1016/j.ces.2013.04.029
  • Fóti G. 1999. Oxidation of organics by intermediates of water discharge on IrO[sub 2] and synthetic diamond anodes. Electrochem Solid-State Lett. 2(5):228. doi:10.1149/1.1390792
  • Ghorbanzadeh N, Jung W, Halajnia A, Lakzian A, Kabra AN, Jeon BH. 2015. Removal of arsenate and arsenite from aqueous solution by adsorption on clay minerals. Geosystem Eng. 18(6):302–311. doi:10.1080/12269328.2015.1062436
  • Gilhotra V, Das L, Sharma A, Kang TS, Singh P, Dhuria RS, Bhatti MS. 2018. Electrocoagulation technology for high strength arsenic wastewater: Process optimization and mechanistic study. J Clean Prod. 198:693–703. doi:10.1016/j.jclepro.2018.07.023
  • Gosling SN, Arnell NW. 2016. A global assessment of the impact of climate change on water scarcity. Clim Change. 134(3):371–385. doi:10.1007/s10584-013-0853-x
  • Guha Mazumder DN. 2005. Effect of chronic intake of arsenic-contaminated water on liver. Toxicol Appl Pharmacol. 206(2):169–175. doi:10.1016/j.taap.2004.08.025
  • Guha Mazumder DN, Chakraborty AK, Ghose A, Gupta JD, Chakraborty DP, Dey SB, Chattopadhyay N. 1988. Chronic arsenic toxicity from drinking tubewell water in rural West Bengal. Bull World Health Organ. 66(4):499–506.
  • Guo H, Stüben D, Berner Z. 2007. Adsorption of arsenic(III) and arsenic(V) from groundwater using natural siderite as the adsorbent. J Colloid Interface Sci. 315(1):47–53. doi:10.1016/j.jcis.2007.06.035
  • Gupta DK, Chatterjee S. 2017. Arsenic contamination in the environment, arsenic contamination in the environment: The issues and solutions. Cham: Springer. doi:10.1007/978-3-319-54356-7.
  • Heck JE, Andrew AS, Onega T, Rigas JR, Jackson BP, Karagas MR, Duell EJ. 2009. Lung cancer in a U.S. population with low to moderate arsenic exposure. Environ Health Perspect. 117(11):1718–1723. doi:10.1289/ehp.0900566
  • Heck JE, Chen Y, Grann VR, Slavkovich V, Parvez F, Ahsan H. 2008. Arsenic exposure and anemia in Bangladesh: A population-based study. J Occup Environ Med. 50(1):80–87. doi:10.1097/JOM.0b013e31815ae9d4
  • Hering JG, Chen P-Y, Wilkie JA, Elimelech M. 1997. Arsenic removal from drinking water during coagulation. J Environ Eng. 123(8):800–807.). doi:10.1061/(ASCE)0733-9372(1997)123:8(800)
  • Hódi M, Polyák K, Hlavay J. 1995. Removal of pollutants from drinking water by combined ion exchange and adsorption methods. Environ Int. 21(3):325–331. doi:10.1016/0160-4120(95)00019-H
  • Hong Y-S, Song K-H, Chung J-Y. 2014. Health effects of chronic arsenic exposure. J Prev Med Public Health. 47(5):245–252. doi:10.3961/jpmph.14.035
  • Hossain MA, Sengupta MK, Ahamed S, Rahman MM, Mondal D, Lodh D, Das B, Nayak B, Roy BK, Mukherjee A, et al. 2005. Ineffectiveness and poor reliability of arsenic removal plants in West Bengal, India. Environ Sci Technol. 39(11):4300–4306. doi:10.1021/es048703u
  • Hou C-H, Huang C-Y. 2013. A comparative study of electrosorption selectivity of ions by activated carbon electrodes in capacitive deionization. Desalination. 314:124–129. doi:10.1016/j.desal.2012.12.029
  • Hu C, Liu H, Chen G, Qu J. 2012. Effect of aluminum speciation on arsenic removal during coagulation process. Sep Purif Technol. 86:35–40. doi:10.1016/j.seppur.2011.10.017
  • Hu CY, Lo SL, Kuan WH. 2003. Effects of co-existing anions on fluoride removal in electrocoagulation (EC) process using aluminum electrodes. Water Res. 37:4513–4523. doi:10.1016/S0043-1354(03)00378-6
  • Hu CY, Lo SL, Kuan WH. 2014. High concentration of arsenate removal by electrocoagulation with calcium. Sep Purif Technol. 126:7–14. doi:10.1016/j.seppur.2014.02.015
  • Huang C-Y, Wu C-L, Yang Y-C, Chang J-W, Kuo Y-C, Cheng Y-Y, Wu J-S, Lee C-C, Guo H-R. 2015. Association between dioxin and diabetes mellitus in an endemic area of exposure in Taiwan. Medicine (Baltimore). 94(42):e1730. doi:10.1097/MD.0000000000001730
  • Huang S-Y, Fan C-S, Hou C-H. 2014. Electro-enhanced removal of copper ions from aqueous solutions by capacitive deionization. J Hazard Mater. 278:8–15. doi:10.1016/j.jhazmat.2014.05.074
  • Hubbard AT. 2002. Encyclopedia of surface and colloid science. New York: Marcel Dekker.
  • Hug SJ, Leupin O. 2003. Iron-catalyzed oxidation of Arsenic(III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction. Environ Sci Technol. 37(12):2734–2742. doi:10.1021/es026208x
  • Iqbal J, Kim H-J, Yang J-S, Baek K, Yang J-W. 2007. Removal of arsenic from groundwater by micellar-enhanced ultrafiltration (MEUF). Chemosphere. 66(5):970–976. doi:10.1016/j.chemosphere.2006.06.005
  • Islam M, Khan I, Attia J, Hassan S, McEvoy M, D'Este C, Azim S, Akhter A, Akter S, Shahidullah S, et al. 2012. Association between hypertension and chronic arsenic exposure in drinking water: A cross-sectional study in Bangladesh. Int J Environ Res Public Health. 9(12):4522–4536. doi:10.3390/ijerph9124522
  • Jiang C, Pang S, Ouyang F, Ma J, Jiang J. 2010. A new insight into Fenton and Fenton-like processes for water treatment. J Hazard Mater. 174(1-3):813–817. doi:10.1016/j.jhazmat.2009.09.125
  • Jiang C, Zhang J. 2007. Progress and prospect in electro-Fenton process for wastewater treatment. J Zhejiang Univ - Sci A. 8(7):1118–1125. doi:10.1631/jzus.2007.A1118
  • Jovanovic D, Rasic-Milutinovic Z, Paunovic K, Jakovljevic B, Plavsic S, Milosevic J. 2013. Low levels of arsenic in drinking water and type 2 diabetes in Middle Banat region, Serbia. Int J Hyg Environ Health. 216(1):50–55. doi:10.1016/j.ijheh.2012.01.001
  • Kahoush M, Behary N, Cayla A, Nierstrasz V. 2018. Bio-Fenton and Bio-electro-Fenton as sustainable methods for degrading organic pollutants in wastewater. Process Biochem. 64: 237–247. doi:10.1016/j.procbio.2017.10.003.
  • Kamaraj R, Ganesan P, Lakshmi J, Vasudevan S. 2013. Removal of copper from water by electrocoagulation process-effect of alternating current (AC) and direct current (DC). Environ Sci Pollut Res. 20(1):399–412. doi:10.1007/s11356-012-0855-7
  • Kerwick MI, Reddy SM, Chamberlain AHL, Holt DM. 2005. Electrochemical disinfection, an environmentally acceptable method of drinking water disinfection? Electrochim Acta. 50(25–26):5270–5277. doi:10.1016/j.electacta.2005.02.074
  • Khatri N, Tyagi S. 2015. Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Front Life Sci. 8(1):23–39. doi:10.1080/21553769.2014.933716
  • Kim M-J. 2001. Separation of inorganic arsenic species in groundwater using ion exchange method. Bull Environ Contam Toxicol. 67(1):46–0051. doi:10.1007/s00128-001-0089-8
  • Kim M-J, Nriagu J. 2000. Oxidation of arsenite in groundwater using ozone and oxygen. Sci Total Environ. 247(1):71–79. doi:10.1016/S0048-9697(99)00470-2
  • Kim Y-J, Kim J-M. 2015. Arsenic toxicity in male reproduction and development. Dev Reprod. 19(4):167–180. doi:10.12717/DR.2015.19.4.167
  • Kobya M, Bayramoglu M, Eyvaz M. 2007. Techno-economical evaluation of electrocoagulation for the textile wastewater using different electrode connections. J Hazard Mater. 148(1–2):311–318. doi:10.1016/j.jhazmat.2007.02.036
  • Kobya M, Gebologlu U, Ulu F, Oncel S, Demirbas E. 2011. Removal of arsenic from drinking water by the electrocoagulation using Fe and Al electrodes. Electrochim Acta. 56(14):5060–5070. doi:10.1016/j.electacta.2011.03.086
  • Kobya M, Senturk E, Bayramoglu M. 2006. Treatment of poultry slaughterhouse wastewaters by electrocoagulation. J Hazard Mater. 133(1–3):172–176. doi:10.1016/j.jhazmat.2005.10.007
  • Kobya M, Sık E, Demirbas E, Goren A.Y, Oncel MS. 2013. Effect of Ca, Mg, Fe and Mn cations on arsenic removal from groundwater by electrocoagulation process using iron ball anodes Effect of Ca, Mg, Fe and Mn on arsenic removal from groundwater by electrocoagulation process using iron ball anodes Departmen. In: The 2nd International Conference on Water Energy and Environment (ICWEE’13). Kusadasi-Turkey. p. 1–11.
  • Kobya M, Ulu F, Gebologlu U, Demirbas E, Oncel MS. 2011. Treatment of potable water containing low concentration of arsenic with electrocoagulation: different connection modes and Fe-Al electrodes. Sep Purif Technol. 77(3):283–293. doi:10.1016/j.seppur.2010.12.018
  • Kumar A, Nidheesh PV, Suresh Kumar M. 2018. Composite wastewater treatment by aerated electrocoagulation and modified peroxi-coagulation processes. Chemosphere. 205:587–593. doi:10.1016/j.chemosphere.2018.04.141
  • Kumar NS, Goel S. 2010. Factors influencing arsenic and nitrate removal from drinking water in a continuous flow electrocoagulation (EC) process. J Hazard Mater. 173(1–3):528–533. doi:10.1016/j.jhazmat.2009.08.117
  • Kummu M, Ward PJ, De Moel H, Varis O. 2010. Is physical water scarcity a new phenomenon? Global assessment of water shortage over the last two millennia. Environ Res Lett. 5(3):034006. doi:10.1088/1748-9326/5/3/034006
  • Lacasa E, Cañizares P, Sáez C, Fernández FJ, Rodrigo MA. 2011. Removal of arsenic by iron and aluminium electrochemically assisted coagulation. Sep Purif Technol. 79(1):15–19. doi:10.1016/j.seppur.2011.03.005
  • Lacasa E, Sáez C, Cañizares P, Fernández FJ, Rodrigo MA. 2013. Arsenic removal from high-arsenic water sources by coagulation and electrocoagulation. Sep Sci Technol. 48(3):508–514. doi:10.1080/01496395.2012.690806
  • Lakshmanan D, Clifford D, Samanta G. 2008. Arsenic removal by coagulation with aluminum, iron, titanium, and zirconium. J Am Water Works Assoc. 100(2):76–88. doi:10.1002/j.1551-8833.2008.tb08144.x
  • Lakshmanan D, Clifford DA, Samanta G. 2010. Comparative study of arsenic removal by iron using electrocoagulation and chemical coagulation. Water Res. 44(19):5641–5652. doi:10.1016/j.watres.2010.06.018
  • Lenoble V, Bouras O, Deluchat V, Serpaud B, Bollinger JC. 2002. Arsenic adsorption onto pillared clays and iron oxides. J Colloid Interface Sci. 255(1):52–58. doi:10.1006/jcis.2002.8646
  • Li L, van Genuchten CM, Addy SEA, Yao J, Gao N, Gadgil AJ. 2012. Modeling As(III) oxidation and removal with iron electrocoagulation in groundwater. Environ Sci Technol. 46(21):12038–12045. doi:10.1021/es302456b
  • Li M, Feng C, Hu W, Zhang Z, Sugiura N. 2009. Electrochemical degradation of phenol using electrodes of Ti/RuO2–Pt and Ti/IrO2–Pt. J Hazard Mater. 162(1):455–462. doi:10.1016/j.jhazmat.2008.05.063
  • Li M, Xue Q, Zhang Z, Feng C, Chen N, Lei X, Shen Z, Sugiura N. 2010. Removal of geosmin (trans-1,10-dimethyl-trans-9-decalol) from aqueous solution using an indirect electrochemical method. Electrochim Acta. 55(23):6979–6982. doi:10.1016/j.electacta.2010.06.060
  • Li X, Chen S, Angelidaki I, Zhang Y. 2018. Bio-electro-Fenton processes for wastewater treatment: advances and prospects. Chem Eng. J. 354:492–506. doi:10.1016/j.cej.2018.08.052
  • Liu H, Zhao X, Qu J. 2010. Electrocoagulation in water treatment. In: Comninellis C, Chen G, editors. Electrochemistry for the environment. New York: Springer. p. 245–262. doi:10.1007/978-0-387-68318-8_10.
  • Lüchtrath H. 1983. The consequences of chronic arsenic poisoning among moselle wine growers. Pathoanatomical investigations of post-mortem examinations performed between 1960 and 1977. J Cancer Res Clin Oncol. 105(2):173–182. doi:10.1007/bf00406929
  • Majumder C, Gupta A. 2011. Factorial design approach to investigate the effects of groundwater cooccurring solutes on arsenic removal by electrocoagulation. J Hazard Toxic Radioact Waste. 15(1):55–61. doi:10.1061/(ASCE)HZ.1944-8376.0000066
  • Mandal BK, Suzuki KT. 2002. Arsenic round the world: a review. Talanta. 58(1):201–235. doi:10.1016/S0039-9140(02)00268-0
  • Mao X, Yuan S, Fallahpour N, Ciblak A, Howard J, Padilla I, Loch-Caruso R, Alshawabkeh AN. 2012. Electrochemically induced dual reactive barriers for transformation of TCE and mixture of contaminants in groundwater. Environ Sci Technol. 46(21):12003–12011. doi:10.1021/es301711a
  • Marshall G, Ferreccio C, Yuan Y, Bates MN, Steinmaus C, Selvin S, Liaw J, Smith AH. 2007. Fifty-year study of lung and bladder cancer mortality in Chile related to arsenic in drinking water. J Natl Cancer Inst. 99(12):920–928. doi:10.1093/jnci/djm004
  • Martínez-Huitle C.A, Ferro S. 2006. Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem Soc Rev. 35(12):1324–1340. doi:10.1039/B517632H
  • Matsuoka K, Inaba M, Iriyama Y, Abe T, Ogumi Z, Matsuoka M. 2002. Anodic oxidation of polyhydric alcohols on a Pt electrode in alkaline solution. Fuel Cells. 2:35–39. doi:10.1002/1615-6854(20020815)2:1<35::AID-FUCE35>3.0.CO;2-2
  • Mechelhoff M, Kelsall GH, Graham NJD. 2013. Electrochemical behaviour of aluminium in electrocoagulation processes. Chem Eng Sci. 95:301–312. doi:10.1016/j.ces.2013.03.010
  • Mithra SS, Ramesh ST, Gandhimathi R, Nidheesh PV. 2017. Studies on the removal of phosphate from water by electrocoagulation with aluminium plate electrodes. Environ Eng Manag J. 16:2293–2302. doi:10.30638/eemj.2017.237
  • Mohora E, Rončević S, Agbaba J, Zrnić K, Tubić A, Dalmacija B. 2018. Arsenic removal from groundwater by horizontal-flow continuous electrocoagulation (EC) as a standalone process. J Environ Chem Eng. 6(1):512–519. doi:10.1016/j.jece.2017.12.042
  • Mollah MYA, Morkovsky P, Gomes JAG, Kesmez M, Parga J, Cocke DL. 2004. Fundamentals, present and future perspectives of electrocoagulation. J Hazard Mater. 114(1–3):199–210. doi:10.1016/j.jhazmat.2004.08.009
  • Mollah MYA, Schennach R, Parga JR, Cocke DL. 2001. Electrocoagulation (EC)- science and applications. J Hazard Mater. 84(1):29–41. doi:10.1016/S0304-3894(01)00176-5
  • Morse BS, Conlan M, Giuliani DG, Nussbaum M. 1980. Mechanism of arsenic‐induced inhibition of erythropoiesis in mice. Am J Hematol. 8(3):273–280. doi:10.1002/ajh.2830080305
  • Moussa DT, El-Naas MH, Nasser M, Al-Marri MJ. 2017. A comprehensive review of electrocoagulation for water treatment: potentials and challenges. J Environ Manage. 186:24–41. doi:10.1016/j.jenvman.2016.10.032
  • Muresan LM. 2015. Corrosion protective coatings for Ti and Ti Alloys used for biomedical implants. In: Butterworth-Heinemann, editor. Intelligent coatings for corrosion control. Oxford: Elsevier. 585-602. doi:10.1016/B978-0-12-411467-8.00017-9.
  • Nadais H, Li X, Alves N, Couras C, Andersen H.R, Angelidaki I, Zhang Y. 2018. Bio-electro-Fenton process for the degradation of non-steroidal anti-inflammatory drugs in wastewater. Chem. Eng. J. 338:401–410. doi:10.1016/j.cej.2018.01.014.
  • Nidheesh PV, Gandhimathi R. 2012. Trends in electro-Fenton process for water and wastewater treatment: an overview. Desalination. 299:1–15. doi:10.1016/j.desal.2012.05.011
  • Nidheesh PV, Gandhimathi R. 2015. Electro Fenton oxidation for the removal of Rhodamine B from aqueous solution in a bubble column reactor under continuous mode. Desalin Water Treat. 55(1):263–271. doi:10.1080/19443994.2014.913266
  • Nidheesh PV, Gandhimathi R, Ramesh ST. 2013. Degradation of dyes from aqueous solution by Fenton processes: a review. Environ Sci Pollut Res. 20:2099–2132. doi:10.1007/s11356-012-1385-z.
  • Nidheesh PV, Gandhimathi R, Sanjini N.S. 2014a. NaHCO3 enhanced Rhodamine B removal from aqueous solution by graphite-graphite electro Fenton system. Sep Purif Technol. 132:568–573. doi:10.1016/j.seppur.2014.06.009
  • Nidheesh PV, Gandhimathi R, Velmathi S, Sanjini NS. 2014b. Magnetite as a heterogeneous electro Fenton catalyst for the removal of Rhodamine B from aqueous solution. RSC Adv. 4(11):5698–5708. doi:10.1039/c3ra46969g
  • Nidheesh PV, Singh TSA. 2017. Arsenic removal by electrocoagulation process: recent trends and removal mechanism. Chemosphere. 181:418–432. doi:10.1016/j.chemosphere.2017.04.082
  • Nidheesh PV, Zhou M, Oturan MA. 2018. An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes. Chemosphere. 197:210–227. doi:10.1016/j.chemosphere.2017.12.195
  • Ociński D, Jacukowicz-Sobala I, Kociołek-Balawejder E. 2014. Oxidation and adsorption of arsenic species by means of hybrid polymer containing manganese oxides. J Appl Polym Sci. 131(3):39489. doi:10.1002/app.39489
  • Omoregie EO, Couture R-M, Van Cappellen P, Corkhill CL, Charnock JM, Polya DA, Vaughan D, Vanbroekhoven K, Lloyd JR. 2013. Arsenic bioremediation by biogenic iron oxides and sulfides. Appl Environ Microbiol. 79(14):4325–4335. doi:10.1128/AEM.00683-13
  • Oren Y. 2008. Capacitive deionization (CDI) for desalination and water treatment — past, present and future (a review). Desalination. 228(1-3):10–29. doi:10.1016/j.desal.2007.08.005
  • Pal P, Chakrabortty S, Linnanen L. 2014. A nanofiltration-coagulation integrated system for separation and stabilization of arsenic from groundwater. Sci Total Environ. 476–477:601–610. doi:10.1016/j.scitotenv.2014.01.041
  • Panizza M, Cerisola G. 2009. Direct and mediated anodic oxidation of organic pollutants. Chem Rev. 109(12):6541–6569. doi:10.1021/cr9001319
  • Panizza M, Martinez-Huitle CA. 2013. Role of electrode materials for the anodic oxidation of a real landfill leachate - Comparison between Ti-Ru-Sn ternary oxide, PbO2 and boron-doped diamond anode. Chemosphere. 90(4):1455–1460. doi:10.1016/j.chemosphere.2012.09.006
  • Perez S, Lin Ho SW, Felix RM. 2007. Electrochemical oxidation of arsenites, by an anode of reticulated glassy carbon as previous step for removal. ECS Trans. 3:61–76. doi:10.1149/1.2806951
  • Perez-Roa RE, Tompkins DT, Paulose M, Grimes CA, Anderson MA, Noguera DR. 2006. Effects of localised, low-voltage pulsed electric fields on the development and inhibition of Pseudomonas aeruginosa biofilms. Biofouling. 22(6):383–390. doi:10.1080/08927010601053541
  • Popat A, Nidheesh PV, Singh TSA, Kumar MS. 2019. Mixed industrial wastewater treatment by combined electrochemical advanced oxidation and biological processes. Chemosphere. 237:124419. doi:10.1016/j.chemosphere.2019.124419
  • Porada S, Zhao R, Van Der Wal A, Presser V, Biesheuvel PM. 2013. Review on the science and technology of water desalination by capacitive deionization. Prog Mater Sci. 58(8):1388–1442. doi:10.1016/j.pmatsci.2013.03.005
  • Preethi V, Ramesh ST, Gandhimathi R, Nidheesh PV. 2019. Optimization of batch electrocoagulation process using Box-Behnken experimental design for the treatment of crude vegetable oil refinery wastewater. J Dispers Sci Technol 1–8. . doi:10.1080/01932691.2019.1595640
  • Qian A, Yuan S, Zhang P, Tong M. 2015. A new mechanism in electrochemical process for arsenic oxidation: production of H2O2 from anodic O2 reduction on the cathode under automatically developed alkaline conditions. Environ Sci Technol. 49:5689–5696. doi:10.1021/acs.est.5b00808.
  • Rabaaoui N, Saad MEK, Moussaoui Y, Allagui MS, Bedoui A, Elaloui E. 2013. Anodic oxidation of o-nitrophenol on BDD electrode: variable effects and mechanisms of degradation. J Hazard Mater. 250–251:447–453. doi:10.1016/j.jhazmat.2013.02.027
  • Rahman A, Persson LÅ, Nermell B, El Arifeen S, Ekström EC, Smith AH, Vahter M. 2010. Arsenic exposure and risk of spontaneous abortion, stillbirth, and infant mortality. Epidemiology. 21(6):797–804. doi:10.1097/EDE.0b013e3181f56a0d
  • Rahman MM, Ng JC, Naidu R. 2009. Chronic exposure of arsenic via drinking water and its adverse health impacts on humans. Environ Geochem Health. 31(S1):189–200. doi:10.1007/s10653-008-9235-0
  • Rahmani AR, Godini K, Nematollahi D, Azarian G. 2015. Electrochemical oxidation of activated sludge by using direct and indirect anodic oxidation. Desalin Water Treat. 56(8):2234–2245. doi:10.1080/19443994.2014.958761
  • Ranjan D, Talat M, Hasan SH. 2009. Biosorption of arsenic from aqueous solution using agricultural residue ‘rice polish’. J Hazard Mater. 166(2-3):1050–1059. doi:10.1016/j.jhazmat.2008.12.013
  • Rashidi Nodeh H, Wan Ibrahim WA, Ali I, Sanagi MM. 2016. Development of magnetic graphene oxide adsorbent for the removal and preconcentration of As(III) and As(V) species from environmental water samples. Environ Sci Pollut Res. 23(10):9759–9773. doi:10.1007/s11356-016-6137-z
  • Ratna Kumar P, Chaudhari S, Khilar KC, Mahajan SP. 2004. Removal of arsenic from water by electrocoagulation. Chemosphere. 55(9):1245–1252. doi:10.1016/j.chemosphere.2003.12.025
  • Rehorek A. 2004. Application of power ultrasound for azo dye degradation. Ultrason Sonochem. 11(3-4):177–182. doi:10.1016/j.ultsonch.2004.01.030
  • Ribeiro AB, Mateus EP, Ottosen LM, Bech-Nielsen G. 2000. Electrodialytic removal of Cu, Cr, and As from chromated copper arsenate-treated timber waste. Environ Sci Technol. 34(5):784–788. doi:10.1021/es990442e
  • Saha JC, Dikshit AK, Bandyopadhyay M, Saha KC. 1999. A review of arsenic poisoning and its effects on human health. Crit Rev Environ Sci Technol. 29(3):281–313. doi:10.1080/10643389991259227
  • Seo S-J, Jeon H, Lee JK, Kim G-Y, Park D, Nojima H, Lee J, Moon S-H. 2010. Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications. Water Res. 44(7):2267–2275. doi:10.1016/j.watres.2009.10.020
  • Shen H, Xu W, Zhang J, Chen M, Martin FL, Xia Y, Liu L, Dong S, Zhu YG. 2013. Urinary metabolic biomarkers link oxidative stress indicators associated with general arsenic exposure to male infertility in a Han Chinese population. Environ Sci Technol. 47:8843–8851. doi:10.1021/es402025n
  • Şık E, Demirbas E, Goren AY, Oncel MS, Kobya M. 2017. Arsenite and arsenate removals from groundwater by electrocoagulation using iron ball anodes: influence of operating parameters. J Water Process Eng. 18:83–91. doi:10.1016/j.jwpe.2017.06.004.
  • Sirés I, Brillas E, Oturan MA, Rodrigo MA, Panizza M. 2014. Electrochemical advanced oxidation processes: today and tomorrow. A review. Environ Sci Pollut Res. 21(14):8336–8367. doi:10.1007/s11356-014-2783-1
  • Smith AH, Marshall G, Yuan Y, Ferreccio C, Liaw J, von Ehrenstein O, Steinmaus C, Bates MN, Selvin S. 2006. Increased mortality from lung cancer and bronchiectasis in young adults after exposure to arsenic in utero and in early childhood. Environ Health Perspect. 114(8):1293–1296. doi:10.1289/ehp.8832
  • Smith AH, Marshall G, Yuan Y, Liaw J, Ferreccio C, Steinmaus C. 2011. Evidence from Chile that arsenic in drinking water may increase mortality from pulmonary tuberculosis. Am J Epidemiol. 173(4):414–420. doi:10.1093/aje/kwq383
  • Smith AH, Steinmaus CM. 2009. Health effects of arsenic and chromium in drinking water: recent human findings. Annu Rev Public Health. 30(1):107–122. doi:10.1146/annurev.publhealth.031308.100143
  • Song P, Yang Z, Xu H, Huang J, Yang X, Wang L. 2014. Investigation of influencing factors and mechanism of antimony and arsenic removal by electrocoagulation using Fe-Al electrodes. Ind Eng Chem Res. 53(33):12911–12919. doi:10.1021/ie501727a
  • Song S, Fan J, He Z, Zhan L, Liu Z, Chen J, Xu X. 2010. Electrochemical degradation of azo dye C.I. Reactive Red 195 by anodic oxidation on Ti/SnO2-Sb/PbO2 electrodes. Electrochim Acta. 55(11):3606–3613. doi:10.1016/j.electacta.2010.01.101
  • Sravanth T, Ramesh ST, Gandhimathi R, Nidheesh PV. 2019. Continuous treatability of oily wastewater from locomotive wash facilities by electrocoagulation. Sep Sci Technol. 55:583–589. doi:10.1080/01496395.2019.1567548.
  • Syam Babu D, Anantha Singh TS, Nidheesh PV, Suresh Kumar M. 2019. Industrial wastewater treatment by electrocoagulation process. Sep Sci Technol. 1–33. doi:10.1080/01496395.2019.1671866
  • Thakur LS, Mondal P. 2017. Simultaneous arsenic and fluoride removal from synthetic and real groundwater by electrocoagulation process: parametric and cost evaluation. J Environ Manage. 190:102–112. doi:10.1016/j.jenvman.2016.12.053
  • Umar M, Aziz HA, Yusoff MS. 2010. Trends in the use of Fenton, electro-Fenton and photo-Fenton for the treatment of landfill leachate. Waste Manag. 30(11):2113–2121. doi:10.1016/j.wasman.2010.07.003
  • Vasudevan S, Kannan BS, Lakshmi J, Mohanraj S, Sozhan G. 2011. Effects of alternating and direct current in electrocoagulation process on the removal of fluoride from water. J Chem Technol Biotechnol. 86(3):428–436. doi:10.1002/jctb.2534
  • Vasudevan S, Lakshmi J, Sozhan G. 2010a. Studies on the removal of arsenate by electrochemical coagulation using aluminum alloy anode. Clean Soil Air Water. 38(5–6):506–515. doi:10.1002/clen.201000001
  • Vasudevan S, Lakshmi J, Sozhan G. 2010b. Studies relating to removal of arsenate by electrochemical coagulation: optimization, kinetics, coagulant characterization. Sep Sci Technol. 45(9):1313–1325. doi:10.1080/01496391003775949
  • Vasudevan S, Lakshmi J, Sozhan G. 2012. Studies on the removal of arsenate from water through electrocoagulation using direct and alternating current. Desalin Water Treat. 48(1–3):163–173. doi:10.1080/19443994.2012.698809
  • Vasudevan S, Lakshmi J. 2011. Effects of alternating and direct current in electrocoagulation process on the removal of cadmium from water - a novel approach. Sep Purif Technol. 80(3):643–651. doi:10.1016/j.seppur.2011.06.027
  • Wan W, Pepping TJ, Banerji T, Chaudhari S, Giammar DE. 2011. Effects of water chemistry on arsenic removal from drinking water by electrocoagulation. Water Res. 45(1):384–392. doi:10.1016/j.watres.2010.08.016
  • Wang S, Mulligan CN. 2006. Occurrence of arsenic contamination in Canada: sources, behavior and distribution. Sci Total Environ. 366(2–3):701–721. doi:10.1016/j.scitotenv.2005.09.005
  • Wang XQ, Liu CP, Yuan Y, Li FB. 2014. Arsenite oxidation and removal driven by a bio-electro-Fenton process under neutral pH conditions. J Hazard Mater. 275:200–209. doi:10.1016/j.jhazmat.2014.05.003
  • Wang Y, Lv C, Xiao L, Fu G, Liu Y, Ye S, Chen Y. 2018. Arsenic removal from alkaline leaching solution using Fe (III) precipitation. Environ Technol (United Kingdom). 40:1714–1720. doi:10.1080/09593330.2018.1429495.
  • WHO 2011. Guidelines for drinking-water quality, WHO Chronicle.
  • Xu N, Zhang Y, Tao H, Zhou S, Zeng Y. 2013. Bio-electro-Fenton system for enhanced estrogens degradation. Bioresour Technol. 138:136–140. doi:10.1016/j.biortech.2013.03.157
  • Xu X, Tan H, Wang Z, Wang C, Pan L, Kaneti YV, Yang T, Yamauchi Y. 2019. Extraordinary capacitive deionization performance of highly-ordered mesoporous carbon nano-polyhedra for brackish water desalination. Environ Sci Nano. 6(3):981–989. doi:10.1039/C9EN00017H
  • Yavuz Y, Koparal A. 2006. Electrochemical oxidation of phenol in a parallel plate reactor using ruthenium mixed metal oxide electrode. J Hazard Mater. 136(2):296–302. doi:10.1016/j.jhazmat.2005.12.018
  • Yetilmezsoy K, Ilhan F, Sapci-Zengin Z, Sakar S, Gonullu MT. 2009. Decolorization and COD reduction of UASB pretreated poultry manure wastewater by electrocoagulation process: a post-treatment study. J Hazard Mater. 162(1):120–132. doi:10.1016/j.jhazmat.2008.05.015
  • Yuan S, Chen M, Mao X, Alshawabkeh AN. 2013. A three-electrode column for Pd-catalytic oxidation of TCE in groundwater with automatic pH-regulation and resistance to reduced sulfur compound foiling. Water Res. 47(1):269–278. doi:10.1016/j.watres.2012.10.009
  • Yuan Y, Marshall G, Ferreccio C, Steinmaus C, Liaw J, Bates M, Smith AH. 2010. Kidney cancer mortality: fifty-year latency patterns related to arsenic exposure. Epidemiology. 21(1):103–108. doi:10.1097/EDE.0b013e3181c21e46
  • Zhang P, Tong M, Yuan S, Liao P. 2014. Transformation and removal of arsenic in groundwater by sequential anodic oxidation and electrocoagulation. J Contam Hydrol. 164:299–307. doi:10.1016/j.jconhyd.2014.06.009
  • Zhao X, Zhang B, Liu H, Qu J. 2010a. Removal of arsenite by simultaneous electro-oxidation and electro-coagulation process. J Hazard Mater. 184(1–3):472–476. doi:10.1016/j.jhazmat.2010.08.058
  • Zhao X, Zhang B, Liu H, Qu J. 2010b. Simultaneous removal of arsenite and fluoride via an integrated electro-oxidation and electrocoagulation process. Chemosphere. 83(5):726–729. doi:10.1016/j.chemosphere.2011.01.055

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.