305
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

New perspectives on the nature and imaging of active site in small metallic particles: II. Electronic effects

References

  • Alberto P, Fiolhais C, Gil VMS. 1996. Relativistic particles in a box. Eur J Phys. 17(1):19–24. doi:10.1088/0143-0807/17/1/004
  • Amendola V, Meneghetti M, Stener M, Guo Y, Chen S, Crespo P, Garcia MA, Hernando A, Pengo P, Pasquato L. 2014. Physicochemical characterization of Au nanoparticles. In: Valcarcel M, Lopez-Lorente AI, editors. Comprehensive analytical chemistry, Vol. 66. Amsterdam (The Netherlands): Elsevier, BV. p. 81–152.
  • Astruc D. 2008. Transition-metal nanoparticles in catalysis: from historical background to state-of-the-art. In: Astruc D, editor. Nanoparticles and catalysis. Weinheim (Germany): Wiley-VCH Verlag GmbH & Co. p. 1–48.
  • Atkins PW. 1997. Physical chemistry. Oxford (UK): Oxford University Press.
  • Bailie JE, Hutchings GJ. 1999. Promotion by sulfur of gold catalysts for crotyl alcohol formation for crotonaldehyde hydrogenation. Chem Commun. (21):2151–2152. doi:10.1039/a906538e
  • Bardi U. 1994. The atomic structure of alloy surfaces and surface alloys. Rep Prog Phys. 57(10):939–987. doi:10.1088/0034-4885/57/10/001
  • Barnard AS. 2010. Modelling of nanoparticles: approaches to morphology and evolution. Rep Prog Phys. 73(8):086502. doi:10.1088/0034-4885/73/8/086502
  • Becker RS, Golovchenko JA, Swartzentruber BS. 1985. Electron interferometry at crystal surfaces. Phys Rev Lett. 55(9):987–990. doi:10.1103/PhysRevLett.55.987
  • Binnig G, Frank KH, Fuchs H, Garcia N, Reihl B, Rohrer H, Salvan F, Williams AR. 1985. Scanning tunneling spectroscopy and inverse photoemission: image and field states. Phys Rev Lett. 55(9):991–994. doi:10.1103/PhysRevLett.55.991
  • Binninger T, Schmidt TJ, Kramer D. 2017. Capacitive electronic metal-support interactions: outer surface charging of supported catalyst particles. Phys Rev B. 96(16):165405.
  • Bligaard T, Norskov JK. 2008. In: Nielsson A, Pettersson LGM, Norskov JK, editros. Chemical bonding at surfaces and interfaces. Amsterdam (The Netherlands): Elsevier, B.V.
  • Bond GC. 1987. Heterogeneous catalysis: principles and applications. Oxford (UK): Oxford University Press.
  • Boronat M, Leyva-Perez A, Corma A. 2014. Theoretical and experimental insights into the origin of the catalytic activity of subnanometric gold clusters: attempts to predict reactivity with clusters and nanoparticles of gold. Acc Chem Res. 47(3):834–844. doi:10.1021/ar400068w
  • Brands DS, Poels EK, Krieger TA, Makarova OV, Weber C, Veer S, Bliek A. 1996. The relationship between reduction temperature and activity in copper-catalyzed ester hydrogenolysis and methanol synthesis. Catal Lett. 36(3–4):175–181. doi:10.1007/BF00807616
  • Brillson LJ, Lu Y. 2011. ZnO schottky barriers and ohmic contacts. J Appl Phys. 109(12):121301. doi:10.1063/1.3581173
  • Campbell CT. 1989. Studies of model catalysts with well-defined surfaces combining ultrahigh vacuum surface characterization with medium- and high-pressure kinetics. Adv Catal. 36:1–54.
  • Campbell CT. 1990. Bimetallic surface chemistry. Annu Rev Phys Chem. 39:775–837. doi:10.1146/annurev.pc.41.100190.004015
  • Campbell CT. 2012. Catalyst-support interactions: electronic perturbations. Nat Chem. 4(8):597–598. doi:10.1038/nchem.1412
  • Chandler BD. 2017. Strong metal-support interactions: an extra layer of complexity. Nat Chem. 9(2):108–109. doi:10.1038/nchem.2724
  • Chuseui CC, Goodman DW. 2002. X-ray photoelectron spectroscopy. In: Encyclopedia of physical science and technology, 3rd ed. New York (NY): Academic Press. p. 921–938.
  • Cramer CJ, Truhlar DG. 2009. Density functional theory for transition metals and transition metal chemistry. Phys Chem Chem Phys. 11(46):10757–10816. doi:10.1039/b907148b
  • Crumlin EJ, Bluhm H, Liu Z. 2013. In situ investigation of electrochemical devices using ambient pressure photoelectron spectroscopy. J Elect Spectrosc Relat Phenom. 190:84–92. doi:10.1016/j.elspec.2013.03.002
  • Dandekar A, Vannice MA. 1999. Crotonaldehyde hydrogenation on Pt/TiO2 and Ni/TiO2 SMSI catalysts. J Catal. 183(2):344–354. doi:10.1006/jcat.1999.2419
  • Fadley CS, Shirley DA. 1970. Electronic densities of states from X-ray photoelectron spectroscopy. J Res Nat Bur Stand A – Phys Chem. 74A:543–558. doi:10.6028/jres.0045
  • Feenstra RM, Dong Y, Semtsiv MP, Masselink WT. 2007. Influence of tip-induced band bending on tunneling spectra of semiconductor surfaces. Nanotechnology. 18(4):044015. doi:10.1088/0957-4484/18/4/044015
  • Fowler RH, Nordheim L. 1928. Electron emission in intense electric fields. Proc R Soc. 119(781):173–181.
  • Frost JC. 1988. Junction effect interactions in methanol synthesis catalysts. Nature. 334(6183):577–580. doi:10.1038/334577a0
  • Gates BC, Flytzani-Stephanopoulos M, Dixon DA, Katz A. 2017. Atomically-dispersed supported metal catalysts: perspectives and suggestions for future research. Catal Sci Technol. 7(19):4259–4275. doi:10.1039/C7CY00881C
  • Gimeno Y, Hernandez-Creus A, Gonzalez S, Salvarezza RC, Arvia AJ. 2001. Preparation of 100-160-nm-sized branched palladium islands with enhanced electrocatalytic properties on HOPG. Chem Mater. 13(5):1857–1864. doi:10.1021/cm0100164
  • Greeley J. 2016. Theoretical heterogeneous catalysis: scaling relationships and computational catalyst design. Annu Rev Chem Biomol Eng. 7:605–635. doi:10.1146/annurev-chembioeng-080615-034413
  • Grunwaldt J-D, Molenbroek AM, Topsøe N-Y, Topsøe H, Clausen BS. 2000. In situ investigations of structural changes in Cu/ZnO catalysts. J Catal. 194(2):452–460. doi:10.1006/jcat.2000.2930
  • Grunze M, Dwyer DJ, Nassir M, Tsai Y. 1992. Controlled atmosphere photoelectron spectroscopy. ACS Symp Ser. 482:169–182.
  • Guliants VV. 1999. Structure–reactivity relationships in oxidation of C4-hydrocarbons on supported vanadia catalysts. Catal Today. 51(2):255–268. doi:10.1016/S0920-5861(99)00049-8
  • Haruta M. 2002. Catalysis of gold nanoparticles deposited on metal oxides. CATTECH. 6(3):102–115.
  • Haruta M. 2011. Spiers memorial lecture: role of perimeter interfaces in catalysis by gold nanoparticles. Faraday Discuss. 152:11–32. doi:10.1039/c1fd00107h
  • Haruta M, Kobayashi T, Sano H, Yamada N. 1987. Novel gold catalysts for CO oxidation at a temperature far below 0. DEG. C. Chem Lett. 4:405–408. doi:10.1246/cl.1987.405
  • Head AR, Bluhm H. 2016. Ambient pressure X-ray photoelectron spectroscopy: Elsevier reference module in chemistry. In: Reedjik J, editor. Molecular sciences, and engineering. Waltham (MA): Elsevier. Doi: 10.1016/B978-0-12-409547-2.10924-2.
  • Herbert FW, Krishnamoorthy A, Van Vliet KJ, Yildiz B. 2013. Quantification of electronic band gaps and surface states of FeS2 (100). Surf Sci. 618:53–61. doi:10.1016/j.susc.2013.08.014
  • Hideo O, Naito S, Tamaru K. 1985. Nature of SMSI effect on carbon monoxide + molecular hydrogen reaction over supported rhodium catalyst. J Phys Chem. 89:3066–3069. doi:10.1021/j100260a023
  • Ishida N, Sueoka K, Feenstra RM. 2009. Influence of surface states on the tunneling spectra of n-type GaAs (110) surfaces. Phys Rev B. 80: 075320. doi:10.1103/PhysRevB.80.075320
  • Jin R. 2012. The impacts of nanotechnology on catalysis by precious metal nanoparticles. Nanotech Rev. 1:31–56.
  • Joyner RW, Roberts MW. 1979. Study of the adsorption of oxygen on silver at high pressure by photoelectron spectroscopy. Chem Phys Lett. 60(3):459–462. doi:10.1016/0009-2614(79)80612-0
  • Joyner RW, Roberts MW, Yates K. 1979. A “high-pressure” electron spectrometer for surface studies. Surf Sci. 87(2):501–509. doi:10.1016/0039-6028(79)90544-2
  • Jung T, Mo YW, Himpsel FJ. 1995. Identification of metals in scanning tunneling microscopy via image states. Phys Rev Lett. 74(9):1641–1644. doi:10.1103/PhysRevLett.74.1641
  • Kaden WE, Wu T, Kunkel WA, Anderson SL. 2009. Electronic structure controls reactivity of size-selected Pd clusters on TiO2 surfaces. Science. 326(5954):826–829. doi:10.1126/science.1180297
  • Knop-Gericke A, Kleimenov E, Havecker M, Blume R, Teschner D, Zafeiratos S, Schlogl R, Bukhtiyarov VI, Kaichev VV, Prosvirin IP, et al. 2009. X-ray photoelectron spectroscopy for investigation of heterogeneous catalytic processes. Adv Catal. 52:213–272.
  • Koch W, Holthausen MC. 2001. A chemist’s guide to density functional theory, 2nd ed. Weinheim (Germany): Wiley VCH-Verlag GmbH.
  • Kohn W, Becke AD, Parr RG. 1996. Density functional theory of electronic structure. J Phys Chem. 100(31):12974–12980. doi:10.1021/jp960669l
  • Koole R, Groeneveld E, Vanmaekelbergh D, Meijerink A, deMello D. 2014. Size effects in semiconductor nanoparticles. In: de Mello Donega C, editor. Nanoparticles. Berlin: Springer-Verlag. p. 13–51.
  • Koper MTM. 2011. Structure sensitivity and nanoscale effects in electrocatalysis. Nanoscale. 3(5):2054–2073. doi:10.1039/c0nr00857e
  • Lightstone JM, Patterson MJ, Liu P, Lofaro JC Jr., White MG. 2008. Characterization and reactivity of Mo4S6+ clusters deposited on Au(111. J Phys Chem C. 112(30):11495–11506. doi:10.1021/jp711938m
  • Liu J, Duan S, Xu J, Qiao B, Lou Y. 2016. Catalysis by supported single metal atoms. Microsc Microanal. 22(S3):860–861. doi:10.1017/S1431927616005146
  • Logadottir A, Rod TH, Nørskov JK, Hammer B, Dahl S, Jacobsen CJH. 2001. The Bronsted-Evans-Planyi relation and the volcano plot for ammonia synthesis over transition metal catalysts. J Catal. 197(2):229–231. doi:10.1006/jcat.2000.3087
  • Lu J, Elam JW, Stair PC. 2013. Synthesis and stabilization of supported metal catalysts by atomic layer deposition. Acc Chem Res. 46(8):1806–1815. doi:10.1021/ar300229c
  • Mathes M, Grass M, Kim YD, Gantefor G. 2004. Characterization of deposited Si-clusters by studying their chemical reactivity. Surf Sci. 552(1–3):L58–L62. doi:10.1016/j.susc.2004.01.014
  • Matyi RJ, Schwartz LH, Butt JB. 1987. Particle size, particle size determination, and related measurements of supported metal catalysts. Catal Rev Sci Eng. 29(1):41–49. doi:10.1080/01614948708067547
  • Molina LM, Hammer B. 2004. Theoretical study of gold nanoparticles supported by MgO(100). Phys Rev B. 69(15):155424. doi:10.1103/PhysRevB.69.155424
  • Naitabdi A, Ono LK, Cuenya BR. 2006. Local investigation of electronic properties of size-selected Au nanoparticles by scanning tunneling spectroscopy. Appl Phys Lett. 89(4):043101. doi:10.1063/1.2233601
  • Nielsson A. 2005. The electronic structure effect in heterogeneous catalysis. Catal Lett. 100:111–114.
  • Niemantsverdriet JW. 2007. Spectroscopy in catalysis. Weinheim (Germany): Wiley-VCH Verlag GmbH & Co.
  • Nørskov JK, Bligaard T, Logadottir A, Bahn S, Bollinger M, Hansen L.B, Bengaard H, Hammer B, Sljivancanin Z, Mavrikakis M, et al. 2002. Universality in heterogeneous catalysis. J Catal. 209(2):275–278., doi:10.1006/jcat.2002.3615
  • O’Connor NJ, Jonayat ASM, Janik MJ, Sentfle TP. 2018. Interaction trends between single metal atoms on oxide supports identified with density functional theory and statistical learning. Nat Catal. [accessed 2018 Jul. 2]. www.nture.com/articles/s41929-018-0094-5.
  • Ogletree DF, Bluhm H, Lebedev G, Fadley CS, Hussain Z, Salmeron M. 2002. A differentially pumped electrostatic lens system for photoemission studies in the millibar range. Rev Sci Inst. 73(11):3872–3877. doi:10.1063/1.1512336
  • Ono LK, Yuan B, Heinrich H, Cuenya BR. 2010. Formation and thermal stability of platinum oxides on size-selected platinum nanoparticles: support effects. J Phys Chem C. 114(50):22119–22133. doi:10.1021/jp1086703
  • Pauwels B, Van Tendeloo G, Bouwen W, Kuhn L.T, Lievens P, Lei H, Hou M. 2000. Low-energy deposited Au clusters investigated by high-resolution electron microscopy and molecular dynamics simulations. Phys Rev B. 62(15):10383–10393. doi:10.1103/PhysRevB.62.10383
  • Philippot K, Serp P. 2013. Concepts in nanocatalysis. In: Philippot K, Serp P, editors. Nanomaterials in catalysis. Weinheim (Germany): Wiley-VCH Verlag GmbH & Co. p. 1-54.
  • Reinecke BN, Kuhl KP, Ogasawara H, Li L, Voss J, Abild-Pedersen F, Nilsson A, Jaramillo TF. 2016. Elucidating the electronic structure of Au nanoparticles and its relevance to catalysis by means of hard X-ray photoelectron spectroscopy. Surf Sci. 650:24–33. doi:10.1016/j.susc.2015.12.025
  • Rocha TCR, Havecker M, Knop-Gericke A, Schlogl R. 2014. Promoters in heterogeneous catalysis: the role of Cl on ethylene epoxidation over Ag. J Catal. 312:12–16. doi:10.1016/j.jcat.2014.01.002
  • Roduner E. 2006. Size matters: why nanomaterials are different. Chem Soc Rev. 35(7):583–592. doi:10.1039/b502142c
  • Roller JM, Arellano-Jiménez MJ, Yu H, Jain R, Carter CB, Maric R. 2013. Catalyst nanoscale assembly from the vapor phase on corrosion resistant supports. Electrochim Acta. 107:632–655. doi:10.1016/j.electacta.2013.06.063
  • Ross JRH. 2011. Heterogeneous catalysis: fundamentals and applications. Oxford (UK): Elsevier.
  • Sattler K. 2002. The energy gap of clusters, nanoparticles, and quantum dots. In: Nalwa HS, editor. Handbook of thin films. New York (NY): Academic Press. p. 61–97.
  • Schintke S, Messerli S, Pivetta M, Patthey F, Libioulle L, Stengel M, De Vita A, Schneider W-D. 2004. Insulator at the ultra-thin limit: MgO on Ag (001). Phys Rev Lett. 87(27):276801. doi:10.1103/PhysRevLett.87.276801
  • Schintke S, Schneider W.-D. 2003. Insulators at the ultra-thin limit: electronic structure studied by STM and STS. J Phys Condens Matter. 16:R49. doi:10.1088/0953-8984/16/4/R02
  • Sermon PA, Bond GC, Wells PB. 1979. Hydrogenation of alkenes over supported gold. J Chem Soc Faraday Trans 1. 75(0):385–394. doi:10.1039/f19797500385
  • Shustorovich E. 1990. The bond-order conservation approach to chemisorption and heterogeneous catalysis, applications and implications. Adv Catal. 37:101–163.
  • Somorjai GA. 1996. Modern surface science and surface technologies: an introduction. Chem Rev. 96(4):1223–1236. doi:10.1021/cr950234e
  • Somorjai GA, Carrazza J. 1986. Structure sensitivity of catalytic reactions. Ind Eng Chem Fund. 25(1):63–69. doi:10.1021/i100021a009
  • Starr DE, Bluhm H, Liu Z, Knop-Gericke A, Havecker M. 2013. Ambient-pressure X-ray photoelectron spectroscopy for the in-situ investigation of heterogeneous catalytic reactions. In: Rodriguez JA, Hansen JC, Chupas PJ, editors. In-situ characterization of heterogeneous catalysts. New York (NY): John Wiley & Sons. p. 315-343.
  • Tauster SJ, Fung SC, Baker RTK, Horsley JA. 1981. Strong interactions in supported-metal catalysts. Science. 211(4487):1121–1125. doi:10.1126/science.211.4487.1121
  • Tauster SJ, Fung SC, Garten RL. 1978. Strong metal-support interactions: group 8 noble metals supported on titanium dioxide. J Am Chem Soc. 100(1):170–175. doi:10.1021/ja00469a029
  • Thomas WJ, Thomas MJ. 2015. Principles and practice of heterogeneous catalysis. Weinheim (Germany): Wiley-VCH Verlag GmbH & Co.
  • Vajda S, Pellin MJ, Greeley JP, Marshall CL, Curtiss LA, Ballentine GA, Elam JW, Catillon-Mucherie S, Redfern PC, Mehmood F, et al. 2009. Subnanometer Pt clusters as highly active and selective catalysts for oxidative dehydrogenation of propane. Nat Mater. 8(3):213–216., doi:10.1038/nmat2384
  • Valden M, Pak S, Lai X, Goodman DW. 1998. Structure sensitivity of CO oxidation over model Au/TiO2 catalysts. Catal Lett. 56(1):7–10.
  • van Buuren T, Dinh LN, Chase LL, Siekhaus WJ, Terminello LJ. 1998. Changes in the electronic properties of Si nanocrystals as a function of particle size. Phys Rev Lett. 80(17):3803–3806. doi:10.1103/PhysRevLett.80.3803
  • Van Santen RA. 2009. Complementary structure sensitive and insensitive catalytic relationships. Acc Chem Res. 42(1):57–66. doi:10.1021/ar800022m
  • Van Santen RA, Neurock M. 1996. Concepts in theoretical heterogeneous catalytic reactivity. Catal Rev Sci Eng. 37:557–698. doi:10.1080/01614949508006451
  • Van Santen RA, Neurock M. 2006. Molecular heterogeneous catalysis. Weinheim (Germany): Wiley-VCH.
  • Vojvodic A, Medford AJ, Studt F, Abild-Pedersen F, Khan TS, Bligaard T, Nørskov JK. 2014. Exploring the limits: a new low-temperature, low pressure ammonia synthesis process. Chem Phys Lett. 598:108–112. doi:10.1016/j.cplett.2014.03.003
  • Vojvodic A, Norskov JK. 2015. New design paradigm for heterogeneous catalysis. Nat Sci Rev. 2(2):140–149. doi:10.1093/nsr/nwv023
  • Weinberg WH. 1973. The bond-energy, bond-order conservation model for chemisorption. J Vac Sci Technol. 10(1):89–94. doi:10.1116/1.1318049
  • Whyte TE Jr. 1974. Metal particle size determination in supported metals. Catal Rev Sci Eng. 8(1):117–134. doi:10.1080/01614947408071858
  • Wiesendanger R, Bode M, Pascal R, Allers W, Schwarz UD. 1996. Issues of atomic-resolution structure and chemical analysis by scanning probe microscopy and spectroscopy. J Vac Sci Technol A. 14(3):1161–1167. doi:10.1116/1.580259
  • Winterbottom WL. 1967. Equilibrium shape of a small particle in contact with a substrate. Acta Metall. 15(2):303–310. doi:10.1016/0001-6160(67)90206-4
  • Wulff G. 1901. Some theorems concerning the growth and dissolution rates of crystals. Z Kristallogr. 34:449–530.
  • 2015. www.physicsopenlab.org/2015/11/20/quanum-dots-a-true-particle-in-a-box-system.
  • Xiao L, Schultz ZD. 2018. Spectroscopic imaging at the nanoscale: technologies and recent applications. Anal Chem. 90(1):440–458. doi:10.1021/acs.analchem.7b04151
  • Yurieva TM, Plyasova LM, Makarova OV, Krieger TA. 1996. Mechanisms of hydrogenation of acetone to isopropanol and carbon oxides to methanol over copper-containing catalysts. J Mol Catal A Chem. 113(3):455–468. doi:10.1016/S1381-1169(96)00272-5
  • Zhou K, Li Y. 2012. Catalysis based on nanocrystals with well‐defined facets. Angew Chem Int Ed. 51(3):602–613. doi:10.1002/anie.201102619

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.