253
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Lutein and biodiesel sequential production from microalga using an environmentally friendly approach

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Balasubramanian RK, Yen Doan TT, Obbard JP. 2013. Factors affecting cellular lipid extraction from marine microalgae. Chem Eng J. 215–216:929–36. doi:10.1016/j.cej.2012.11.063
  • Barba FJ, Grimi N, Vorobiev E. 2015. New approaches for the use of non-conventional cell disruption technologies to extract potential food additives and nutraceuticals from microalgae. Food Eng Rev. 7(1):45–62. doi:10.1007/s12393-014-9095-6
  • Bhalamurugan GL, Valerie O, Mark L. 2018. Valuable bioproducts obtained from microalgal biomass and their commercial applications: A review. Environ Eng Res. 23(3):229–41. doi:10.4491/eer.2017.220
  • Bischoff HW, Bold HC. 1963. Some soil algae from Enchanted Rock and related algal species. Austin: University of Texas.
  • Brown MR. 1991. The amino-acid and sugar composition of 16 species of microalgae used in mariculture. J Exp Mar Bio Ecol. 145(1):79–99. doi:10.1016/0022-0981(91)90007-J
  • Buddrick O, Jones OAH, Morrison PD, Small DM. 2013. Heptane as a less toxic option than hexane for the separation of vitamin E from food products using normal phase HPLC. RSC Adv. 3(46):24063. doi:10.1039/c3ra44442b
  • Buske TC, Robaina AD, Peiter MX, Torres RR, Rosso RB, Braga FDVA. 2014. Determination of soil moisture by different heating sources. Irriga. 19:315–24. doi:10.15809/irriga.2014v19n2p315
  • Butnariu M. 2016. Methods of analysis (extraction, separation, identification and quantification) of carotenoids from natural products. J Ecosyst Ecography. 6:1–19.
  • Cavonius LR, Carlsson N.-G, Undeland I. 2014. Quantification of total fatty acids in microalgae: comparison of extraction and transesterification methods. Anal Bioanal Chem. 406(28):7313–22. doi:10.1007/s00216-014-8155-3
  • Cerón MC, Campos I, Sánchez JF, Acién FG, Molina E, and, Fernández-Sevilla JM, 2008. Recovery of lutein from microalgae biomass: development of a process for Scenedesmus almeriensis biomass. J Agric Food Chem. 56(24):11761–6. doi:10.1021/jf8025875
  • Chan M.-C, Ho S.-H, Lee D.-J, Chen C.-Y, Huang C.-C, Chang J.-S. 2013. Characterization, extraction and purification of lutein produced by an indigenous microalga Scenedesmus obliquus CNW-N. Biochem Eng J. 78:24–31. doi:10.1016/j.bej.2012.11.017
  • Chen C.-Y, Jesisca Hsieh C, Lee D.-J, Chang C.-H, Chang J.-S. 2016. Production, extraction and stabilization of lutein from microalga Chlorella sorokiniana MB-1. Bioresour Technol. 200:500–5. doi:10.1016/j.biortech.2015.10.071
  • Chen Y, Li X, Sun Z, Zhou Z. 2017. Isolation and identification of Choricystis minor Fott and mass cultivation for oil production. Algal Res. 25:142–8. doi:10.1016/j.algal.2017.05.012
  • Conkerton EJ, Wan PJ, Richard OA. 1995. Hexane and heptane as extraction solvents for cottonseed: a laboratory-scale study. J Am Oil Chem Soc. 72(8):963–5. doi:10.1007/BF02542075
  • D’Alessandro EB, Antoniosi Filho NR. 2016. Concepts and studies on lipid and pigments of microalgae: A review. Renew Sustain Energy Rev. 58:832–41. doi:10.1016/j.rser.2015.12.162
  • D’Alessandro EB, Soares AT, Pereira J, Antoniosi Filho NR. 2018. Viability of biodiesel production from a thermophilic microalga in conventional and alternative culture media. Braz J Bot. 41:319–27. doi:10.1007/s40415-018-0459-7
  • Damergi E, Schwitzguébel J.-P, Refardt D, Sharma S, Holliger C, Ludwig C. 2017. Extraction of carotenoids from Chlorella vulgaris using green solvents and syngas production from residual biomass. Algal Res. 25:488–95. doi:10.1016/j.algal.2017.05.003
  • Dey S, Rathod VK. 2013. Ultrasound assisted extraction of β-carotene from Spirulina platensis. Ultrason Sonochem. 20(1):271–6. doi:10.1016/j.ultsonch.2012.05.010
  • Dong T, Yu X, Miao C, Rasco B, Garcia-Erez M, Sablani SS, Chen S. 2015. Selective esterification to produce microalgal biodiesel and enrich polyunsaturated fatty acid using zeolite as a catalyst. RSC Adv. 5(103):84894–900. doi:10.1039/C5RA17512G
  • Duran SK, Kumar P, Sandhu SS. 2018. A review on microalgae strains, cultivation, harvesting, biodiesel conversion and engine implementation. Biofuels.:1–12. doi:10.1080/17597269.2018.1457314
  • Ehimen EA, Sun ZF, Carrington CG. 2010. Variables affecting the in situ transesterification of microalgae lipids. Fuel. 89(3):677–84. doi:10.1016/j.fuel.2009.10.011
  • Energy Information Administration. 2019. Recent Data: Price summary (historical and forecast). Washington (DC): U.S. Energy Information Administration. [acessed 2019 Jun 05]. https://www.eia.gov/analysis/.
  • Fábryová T, Cheel J, Kubáč D, Hrouzek P, Vu DL, Tůmová L, Kopecký J. 2019. Purification of lutein from the green microalgae Chlorella vulgaris by integrated use of a new extraction protocol and a multi-injection high performance counter-current chromatography (HPCCC). Algal Res. 41:101574. doi:10.1016/j.algal.2019.101574
  • Fasaei F, Bitter JH, Slegers PM, van Boxtel AJB. 2018. Techno-economic evaluation of microalgae harvesting and dewatering systems. Algal Res. 31:347–62. doi:10.1016/j.algal.2017.11.038
  • Fernández-Sevilla JM, Acién Fernández FG, Molina Grima E. 2010. Biotechnological production of lutein and its applications. Appl Microbiol Biotechnol. 86(1):27–40. doi:10.1007/s00253-009-2420-y
  • Gong M, Bassi A. 2016. Carotenoids from microalgae: a review of recent developments. Biotechnol Adv. 34(8):1396–412. doi:10.1016/j.biotechadv.2016.10.005
  • Gong M, Wang Y, Bassi A. 2017. Process analysis and modeling of a single-step lutein extraction method for wet microalgae. Appl Microbiol Biotechnol. 101(22):8089–99. doi:10.1007/s00253-017-8496-x
  • Greenwell HC, Laurens LML, Shields RJ, Lovitt RW, Flynn KJ. 2010. Placing microalgae on the biofuels priority list: a review of the technological challenges. J R Soc Interface . 7(46):703–26. doi:10.1098/rsif.2009.0322
  • Guldhe A, Singh B, Rawat I, Ramluckan K, Bux F. 2014. Efficacy of drying and cell disruption techniques on lipid recovery from microalgae for biodiesel production. Fuel. 128:46–52. doi:10.1016/j.fuel.2014.02.059
  • Hu I.-C. 2019. Production of potential coproducts from microalgae. In: Pandey, A, Chang, J-S, Soccol, CR, Lee, D-J, and Chisti, Y. editors, Biofuels from Algae. Oxford (UK): Elsevier B.V., p. 345–58.
  • Krienitz L, Takeda H, Hepperle D. 1999. Ultrastructure, cell wall composition, and phylogenetic position of Pseudodictyosphaerium jurisii (Chlorococcales, Chlorophyta) including a comparison with other picoplanktonic green algae. Phycologia. 38(2):100–7. doi:10.2216/i0031-8884-38-2-100.1
  • Leung DYC, Wu X, Leung MKH. 2010. A review on biodiesel production using catalyzed transesterification. Appl Energy. 87(4):1083–95. doi:10.1016/j.apenergy.2009.10.006
  • Li H.-B, Jiang Y, Chen F. 2002. Isolation and purification of lutein from the microalga Chlorella vulgaris by extraction after saponification. J Agric Food Chem. 50(5):1070–2. − doi:10.1021/jf010220b
  • Lin J.-H, Lee D.-J, Chang J.-S. 2015. Lutein production from biomass: marigold flowers versus microalgae. Bioresour Technol. 184:421–8. doi:10.1016/j.biortech.2014.09.099
  • Macías-Sánchez MD, Robles-Medina A, Hita-Peña E, Jiménez-Callejón MJ, Estéban-Cerdán L, González-Moreno PA, Molina-Grima E. 2015. Biodiesel production from wet microalgal biomass by direct transesterification. Fuel. 150:14–20. doi:10.1016/j.fuel.2015.01.106
  • Mallick N, Bagchi SK, Koley S, Singh AK. 2016. Progress and challenges in microalgal biodiesel production. Front Microbiol. 7:1019. doi:10.3389/fmicb.2016.01019
  • Martins FR, Pereira EB, Silva SAB, Abreu SL, Colle S. 2008. Solar energy scenarios in Brazil, Part one: Resource assessment. Energy Policy. 36:2843–54. doi:10.1016/j.enpol.2008.02.014
  • Mathimani T, Uma L, Prabaharan D. 2015. Homogeneous acid catalysed transesterification of marine microalga Chlorella sp. BDUG 91771 lipid – An efficient biodiesel yield and its characterization. Renew Energy. 81:523–33. doi:10.1016/j.renene.2015.03.059
  • Mazzuca Sobczuk T, Chisti Y. 2010. Potential fuel oils from the microalga Choricystis minor. J Chem Technol Biotechnol. 85(1):100–8. doi:10.1002/jctb.2272
  • Menezes RS, Leles MIG, Soares AT, Franco PIB, Antoniosi Filho NR, Sant'Anna CL, Vieira AAH. 2013. Avaliação da potencialidade de microalgas dulcícolas como fonte de matéria-prima graxa para a produção de biodiesel. Quím Nova. 36(1):10–15. doi:10.1590/S0100-40422013000100003
  • Menezes RS, Soares AT, Lopes RG, Magnotti C, Derner RB, Mori CC, Vieira AAH, Antoniosi Filho NR. 2015. Evaluation of fatty acid composition of the microalgae Choricystis minor var. minor according to two different nutrient feeding strategies. J Renew Sustain Energy. 7(4):043117. doi:10.1063/1.4926908
  • Menezes RS, Soares AT, Marques Júnior JG, Lopes RG, da Arantes RF, Derner RBA, Filho NR. 2016. Culture medium influence on growth, fatty acid, and pigment composition of Choricystis minor var. minor: a suitable microalga for biodiesel production. J Appl Phycol. 28(5):2679–86. doi:10.1007/s10811-016-0828-1
  • Mitchell R, Goacher P. 2017. Economic assessment of Dunaliella based algae biorefinery concepts. London (UK): D-Factory.
  • Molina Grima E, Belarbi E.-H, Acién Fernández F, Robles Medina A, Chisti Y. 2003. Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv. 20(7-8):491–515. doi:10.1016/S0734-9750(02)00050-2
  • Molino A, Mehariya S, Iovine A, Larocca V, Di Sanzo G, Martino M, Casella P, Chianese S, Musmarra D. 2018b. Extraction of astaxanthin and lutein from microalga Haematococcus pluvialis in the red phase using CO2 supercritical fluid extraction technology with ethanol as co-solvent. Mar Drugs. 16(11):432. doi:10.3390/md16110432
  • Molino A, Mehariya S, Karatza D, Chianese S, Iovine A, Casella P, Marino T, Musmarra D. 2019. Bench-Scale cultivation of microalgae Scenedesmus almeriensis for CO2 capture and lutein production. Energies. 12(14):2806. doi:10.3390/en12142806
  • Molino A, Rimauro J, Casella P, Cerbone A, Larocca V, Chianese S, Karatza D, Mehariya S, Ferraro A, Hristoforou E, et al. 2018a. Extraction of astaxanthin from microalga Haematococcus pluvialis in red phase by using generally recognized as safe solvents and accelerated extraction. J Biotechnol. 283:51–61. doi:10.1016/j.jbiotec.2018.07.010
  • Raheem A, Prinsen P, Vuppaladadiyam AK, Zhao M, Luque R. 2018. A review on sustainable microalgae based biofuel and bioenergy production: Recent developments. J Clean Prod. 181:42–59. doi:10.1016/j.jclepro.2018.01.125
  • Rammuni MN, Ariyadasa TU, Nimarshana PHV, Attalage RA. 2019. Comparative assessment on the extraction of carotenoids from microalgal sources: Astaxanthin from H. pluvialis and β-carotene from D. salina. Food Chem. 277:128–34. doi:10.1016/j.foodchem.2018.10.066
  • Sanzo G, Mehariya S, Martino M, Larocca V, Casella P, Chianese S, Musmarra D, Balducchi R, Molino A. 2018. Supercritical carbon dioxide extraction of astaxanthin, lutein, and fatty acids from Haematococcus pluvialis microalgae. Mar Drugs. 16(9):334. doi:10.3390/md16090334
  • Sawaengsak W, Silalertruksa T, Bangviwat A, Gheewala SH. 2014. Life cycle cost of biodiesel production from microalgae in Thailand. Energy Sustain Dev. 18:67–74. doi:10.1016/j.esd.2013.12.003
  • Scholz M J, Weiss T L, Jinkerson R E, Jing J, Roth R, Goodenough U, Posewitz M C, Gerken H G. 2014. Ultrastructure and composition of the Nannochloropsis gaditana cell wall. Eukaryot Cell. 13(11):1450–64. doi:10.1128/EC.00183-14
  • Slade R, Bauen A. 2013. Micro-algae cultivation for biofuels: Cost, energy balance, environmental impacts and future prospects. Biomass Bioenergy. 53:29–38. doi:10.1016/j.biombioe.2012.12.019
  • Soares AT, Marques Júnior JG, Lopes RG, Derner RBA, Filho NR. 2016. Improvement of the extraction process for high commercial value pigments from Desmodesmus sp. microalgae. J Braz Chem Soc. 27:1083–93.
  • Stahl M. 2003. Peak purity analysis in HPLC and CE using diode-array technology. Waldbronn: Agil Technol. 8:5988–8647.
  • Tang Y, Zhang Y, Rosenberg J, Betenbaugh M, Wang F. 2016. Optimization of one-step in situ transesterification method for accurate quantification of EPA in Nannochloropsis gaditana. Appl Sci. 6(11):343. doi:10.3390/app6110343
  • Wahlen BD, Willis RM, Seefeldt LC. 2011. Biodiesel production by simultaneous extraction and conversion of total lipids from microalgae, cyanobacteria, and wild mixed-cultures. Bioresour Technol. 102(3):2724–30. doi:10.1016/j.biortech.2010.11.026

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.