101
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Signal characteristics of IR transceiver pair during two phase flow of varying liquid film thickness in a mini-channel

&

References

  • Arunaganesan S, Adhavan J, Arunkumar S, Venkatesan M. 2017. Laser-based measurement of gas–liquid two-phase flows in micro and mini channels using multiple photodiode arrangement. Chem Eng Commun. 204:337–347. doi:10.1080/00986445.2016.1270942
  • Awad MM. 2012. Two-phase flow - an overview of heat transfer phenomena. Intech. 251–340.
  • Azevedo MBD, Andrade P, Vinhas M, Su J. 2012. Characterization of velocity and shape of rising bubbles in a stagnant liquid vertical column by ultrasonic and visualization techniques. Proceedings of the 14th Brazilian Congress of Thermal Sciences and Engineering; Nov 18–22; Rio De Janeiro: Proceedings of the ENCIT 2012.
  • Azevedo MBD, Su J. 2013. Ultrasonic measurements of bubble shape and liquid film thickness of a Taylor bubble rising in a stagnant water column. Proceedings of the 2013 International Nuclear Atlantic Conference; Nov 24–29. Recife, PE, Brazil, ASSOCIAC¸ AO BRASILEIRA DE ENERGIA NUCLEAR - ABEN ˜ ISBN: 978-85-99141-05-2
  • Bercic G, Pintar A. 1997. The role of gas bubbles and liquid slug lengths on mass transport in the Taylor flow through capillaries. Chem Eng Sci. 52:3709–3719. doi:10.1016/S0009-2509(97)00217-0
  • Bretherton F. 1961. The motion of long bubbles in tubes. J Fluid Mech. 10:166. doi:10.1017/S0022112061000160
  • Cherukumudi A, Klaseboer E, Khan SA, Manica R. 2015. Prediction of the shape and pressure drop of Taylor bubbles in circular tubes. Microfluid Nanofluid. 19:1221–1233. doi:10.1007/s10404-015-1641-x
  • De Ryck A. 2002. The effect of weak inertia on the emptying of a tube. Phys Fluids. 14:2102–2108. doi:10.1063/1.1480267
  • Gupta R, Fletcher DF, Haynes BS. 2010. Taylor flow in microchannels: a review of experimental and computational work. J Comput Multiph Flows. 2:1–31. doi:10.1260/1757-482X.2.1.1
  • Gupta R, Leung SSY, Manica R, Fletcher DF, Haynes BS. 2013. Three dimensional effects in Taylor flow in circular microchannels. La Houille Blanche. 2:60–67. doi:10.1051/lhb/2013017
  • Han Y, Shikazono N. 2009. Measurement of the liquid film thickness in micro tube slug flow. Int J Heat Fluid Flow. 30:842–853. doi:10.1016/j.ijheatfluidflow.2009.02.019
  • Hervieu E, Seleghim P. 1999. Direct imaging of two-phase flows by electrical impedance measurements. 1st World Congress on Industrial Process Tomography. p. 62–69.
  • Ide H, Kimura R, Kawaji M. 2007. Optical measurement of void fraction and bubble size distributions in a microchannel. Heat Transfer Eng. 28:713–719. doi:10.1080/01457630701328031
  • Jensen MH, Libchaber A, Pelce P, Zocchi G. 1987. Effect of gravity on the Saffman-Taylor meniscus: theory and experiment. Phys Rev A Gen Phys. 35:2221–2227. doi:10.1103/physreva.35.2221
  • John FB, Edward GF. 1963. Flow of liquids in horizontal capillary tubes. AIChE J. 9:279–282.
  • Kashid MN, Agar DW. 2007. Hydrodynamics of liquid-liquid slug flow capillary microreactor: flow regimes, slug size and pressure drop. Chem Eng J. 131:1–13. doi:10.1016/j.cej.2006.11.020
  • Leung SSY, Gupta R, Fletcher DF, Haynes BS. 2012. Gravitational effect on Taylor flow in horizontal micro channels. Chem Eng Sci. 69:553–564. doi:10.1016/j.ces.2011.11.016
  • Mithran N, Venkatesan M. 2019. IR transceiver irradiation characteristics on bubble/slug flow regimes in conventional and minichannels. IEEE Trans Instrum Meas. 68:240–249. doi:10.1109/TIM.2018.2843078
  • Mithran N, Venkatesan M. 2020. Volumetric reconstruction of Taylor slug gas flow using IR transceiver in mini-channels. IEEE Trans Instrum Meas. 69:3818–3825. doi:10.1109/TIM.2019.2937426
  • Nazemi E, Feghhi SAH, Roshani RGH, Gholipour P, Setayeshi S. 2016. Precise void fraction measurement in two-phase flows independent of the flow regime using gamma-ray attenuation. Nucl Eng Technol. 48:64–71. doi:10.1016/j.net.2015.09.005
  • Rocha LAM, Miranda JM, Campos JBLM. 2017. Wide range simulation study of Taylor bubbles in circular milli and microchannels. Micromachines. 8:154.
  • Sobieszuk P, Cygański P, Pohorecki R. 2010. Bubble lengths in the gas-liquid Taylor flow in microchannels. Chem Eng Res Des. 88:263–269. doi:10.1016/j.cherd.2009.07.007
  • Umminger K, Schollenberger S, Dennhardt L, Schmidt H, Herbst O, Ganzmann I. 2018. Development of procedures for local void fraction measurements. Nucl Eng Des. 336:163–170. doi:10.1016/j.nucengdes.2018.05.014
  • Vignesh KS, Vasudevan C, Arunkumar S, Suwathy R, Venkatesan M. 2018. Laser induced fluorescence measurement of liquid film thickness and variation in Taylor flow. Eur J Mech B Fluids. 70:85–92. doi:10.1016/j.euromechflu.2018.03.005
  • Ye J, Peng L, Wang W, Zhou W. 2011. Optimization of helical capacitance sensor for void fraction measurement of gas-liquid two-phase flow in a small diameter tube. IEEE Sens J. 11:2189–2196. doi:10.1109/JSEN.2011.2116115

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.