1,052
Views
10
CrossRef citations to date
0
Altmetric
Review Article

A critical review on the techno-economic analysis of membrane gas absorption for CO2 capture

, , &

References

  • Abdulhameed MA, Othman MHD, Ismail AF, Matsuura T, Harun Z, Rahman MA, Puteh MH, Jaafar J, Rezaei M, Hubadillah SK. 2017. Carbon dioxide capture using a superhydrophobic ceramic hollow fibre membrane for gas-liquid contacting process. J Clean Prod. 140:1731–1738. doi:10.1016/j.jclepro.2016.07.015
  • Abu-Zahra MRM, Niederer JPM, Feron PHM, Versteeg GF. 2007. CO2 capture from power plants: Part II. A parametric study of the economical performance based on mono-ethanolamine. Int J Greenh Gas Con. 1(2):135–142. doi:10.1016/S1750-5836(07)00032-1
  • Ahmad AL, Mohammed HN, Ooi BS, Leo CP. 2013. Deposition of a polymeric porous superhydrophobic thin layer on the surface of poly(vinylidenefluoride) hollow fiber membrane. Pol J Chem Technol. 15(3):1–6. doi:10.2478/pjct-2013-0036
  • Ahmad NA, Mohd Noh AN, Leo CP, Ahmad AL. 2017. CO2 removal using membrane gas absorption with PVDF membrane incorporated with POSS and SAPO-34 zeolite. Chem Eng Res Des. 118:238–247. doi:10.1016/j.cherd.2016.12.019
  • Arias AM, Mussati MC, Mores PL, Scenna NJ, Caballero JA, Mussati SF. 2016. Optimization of multi-stage membrane systems for CO2 capture from flue gas. Int J Greenh Gas Con. 53:371–390. doi:10.1016/j.ijggc.2016.08.005
  • Bonalumi D, Lillia S, Valenti G. 2019. Rate-based simulation and techno-economic analysis of coal-fired power plants with aqueous ammonia carbon capture. Energy Convers Manag. 199:111966. doi:10.1016/j.enconman.2019.111966
  • Castro-Muñoz R, Fíla V, Dung CT. 2017. Mixed Matrix Membranes Based on PIMs for Gas Permeation: Principles, Synthesis, and Current Status. Chem Eng Commun. 204(3):295–309. doi:10.1080/00986445.2016.1273832
  • Chakradhar RPS, Prasad G, Bera P, Anandan C. 2014. Stable superhydrophobic coatings using PVDF–MWCNT nanocomposite. Appl Surf Sci. 301:208–215. doi:10.1016/j.apsusc.2014.02.044
  • Chen Z, Shen Q, Gong H, Du M. 2020. Preparation of a novel dual-layer polyvinylidene fluoride hollow fiber composite membrane with hydrophobic inner layer for carbon dioxide absorption in a membrane contactor. Sep Purif Technol. 248:117045. doi:10.1016/j.seppur.2020.117045
  • Dastbaz A, Karimi-Sabet J, Ahadi H, Amini Y. 2017. Preparation and characterization of novel modified PVDF-HFP/GO/ODS composite hollow fiber membrane for Caspian Sea water desalination. Desalination. 424:62–73. doi:10.1016/j.desal.2017.09.030
  • Fashandi H, Ghodsi A, Saghafi R, Zarrebini M. 2016. CO2 absorption using gas-liquid membrane contactors made of highly porous poly(vinyl chloride) hollow fiber membranes. Int J Greenh Gas Con. 52:13–23. doi:10.1016/j.ijggc.2016.06.010
  • Figueroa JR, Cuenca HE. 2017. Membrane Gas Absorption Processes: Applications, Design and Perspectives. In: Du H, Thompson A, Wang X, editors. Osmotically Driven Membrane Processes Approach, Development and Current Status. London (RBKC): IntechOpen. p. 254–272.
  • Ghobadi J, Ramirez D, Khoramfar S, Jerman R, Crane M, Hobbs K. 2018. Simultaneous absorption of carbon dioxide and nitrogen dioxide from simulated flue gas stream using gas-liquid membrane contacting system. Int J Greenh Gas Con. 77:37–45. doi:10.1016/j.ijggc.2018.07.026
  • Gilassi S, Taghavi SM, Rodrigue D, Kaliaguine S. 2020. Techno-economic evaluation of membrane and enzymatic-absorption processes for CO2 capture from flue-gas. Sep Purif Technol. 248:116941. doi:10.1016/j.seppur.2020.116941
  • Giordano L, Roizard D, Bounaceur R, Favre E. 2017. Evaluating the effects of CO2 capture benchmarks on efficiency and costs of membrane systems for post-combustion capture: A parametric simulation study. Int J Greenh Gas Con. 63:449–461. doi:10.1016/j.ijggc.2017.05.002
  • Hammond GP, Spargo J. 2014. The prospects for coal-fired power plants with carbon capture and storage: A UK perspective. Energy Convers Manag. 86:476–489. doi:10.1016/j.enconman.2014.05.030
  • Hanak DP, Manovic V. 2018. Techno-economic feasibility assessment of CO2 capture from coal-fired power plants using molecularly imprinted polymer. Fuel. 214:512–520. doi:10.1016/j.fuel.2017.10.107
  • He X, Hägg M-B. 2014. Energy Efficient Process for CO2 Capture from Flue gas with Novel Fixed-site-carrier Membranes. Energy Procedia. 63:174–185. doi:10.1016/j.egypro.2014.11.018
  • Ho MT, Allinson GW, Wiley DE. 2011. Comparison of MEA capture cost for low CO2 emissions sources in Australia. Int J Greenh Gas Con. 5(1):49–60. doi:10.1016/j.ijggc.2010.06.004
  • Huang Y, Merkel TC, Baker RW. 2014. Pressure ratio and its impact on membrane gas separation processes. J Membr Sci. 463:33–40. doi:10.1016/j.memsci.2014.03.016
  • Jiang K, Li K, Yu H, Chen Z, Wardhaugh L, Feron P. 2017. Advancement of ammonia based post-combustion CO2 capture using the advanced flash stripper process. Appl Energy. 202:496–506. doi:10.1016/j.apenergy.2017.05.143
  • Jiang K, Yu H, Chen L, Fang M, Azzi M, Cottrell A, Li K. 2020. An advanced, ammonia-based combined NOx/SOx/CO2 emission control process towards a low-cost, clean coal technology. Appl Energy. 260:114316. doi:10.1016/j.apenergy.2019.114316
  • Jung J, Jeong YS, Lim Y, Lee CS, Han C. 2013. Advanced CO2 capture process using MEA scrubbing: Configuration of a split flow and phase separation heat exchanger. Energy Procedia. 37:1778–1784. doi:10.1016/j.egypro.2013.06.054
  • Kaldis SP, Skodras G, Grammelis P, Sakellaropoulos GP. 2007. Application of polymer membrane technology in coal combustion processes. Chem Eng Commun. 194(3):322–333. doi:10.1080/15397730600830021
  • Kimball E, Al-Azki A, Gomez A, Goetheer E, Booth N, Adams D, Ferre D. 2014. Hollow fiber membrane contactors for CO2 capture: modeling and up-scaling to CO2 capture for an 800 MWe coal power station. Oil Gas Sci Technol Rev Ifp Energies Nouvelles. 69(6):1047–1058. doi:10.2516/ogst/2013165
  • Kujawa J, Rozicka A, Cerneaux S, Kujawski W. 2014. The influence of surface modification on the physicochemical properties of ceramic membranes. Colloids Surf A Physicochem Eng Asp. 443:567–575. doi:10.1016/j.colsurfa.2013.10.044
  • Kuo C-Y, Lin H-N, Tsai H-A, Wang D-M, Lai J-Y. 2008. Fabrication of a high hydrophobic PVDF membrane via nonsolvent induced phase separation. Desalination. 233(1-3):40–47. doi:10.1016/j.desal.2007.09.025
  • Lee E-J, An AK, He T, Woo YC, Shon HK. 2016. Electrospun nanofiber membranes incorporating fluorosilane-coated TiO2 nanocomposite for direct contact membrane distillation. J Membr Sci. 520:145–154. doi:10.1016/j.memsci.2016.07.019
  • Lee J-Y, Keener TC, Yang YJ. 2009. Potential flue gas impurities in carbon dioxide streams separated from coal-fired power plants. J Air Waste Manag Assoc. 59(6):725–732. doi:10.3155/1047-3289.59.6.725
  • Li K, Cousins A, Yu H, Feron P, Tade M, Luo W, Chen J. 2016. Systematic study of aqueous monoethanolamine-based CO2 capture process: model development and process improvement. Energy Sci Eng. 4(1):23–39. doi:10.1002/ese3.101
  • Li K, Leigh W, Feron P, Yu H, Tade M. 2016. Systematic study of aqueous monoethanolamine (MEA)-based CO2 capture process: Techno-economic assessment of the MEA process and its improvements. Appl Energy. 165:648–659. doi:10.1016/j.apenergy.2015.12.109
  • Li Y, Wang L, Hu X, Jin P, Song X. 2018. Surface modification to produce superhydrophobic hollow fiber membrane contactor to avoid membrane wetting for biogas purification under pressurized conditions. Sep Purif Technol. 194:222–230. doi:10.1016/j.seppur.2017.11.041
  • Li K, Yu H, Yan S, Feron P, Wardhaugh L, Tade M. 2016. Technoeconomic assessment of an advanced aqueous ammonia-based postcombustion capture process integrated with a 650-MW coal-fired power station. Environ Sci Technol. 50(19):10746–10755. doi:10.1021/acs.est.6b02737
  • Lin J, Lin F, Liu R, Li P, Fang S, Ye W, Zhao S. 2020. Scalable fabrication of robust superhydrophobic membranes by one-step spray-coating for gravitational water-in-oil emulsion separation. Sep Purif Technol. 231:115898. doi:10.1016/j.seppur.2019.115898
  • Lin S-H, Tung K-L, Chen W-J, Chang H-W. 2009. Absorption of carbon dioxide by mixed piperazine–alkanolamine absorbent in a plasma-modified polypropylene hollow fiber contactor. J Membr Sci. 333(1-2):30–37. doi:10.1016/j.memsci.2009.01.039
  • Lin Y, Xu Y, Loh CH, Wang R. 2018. Development of robust fluorinated TiO2/PVDF composite hollow fiber membrane for CO2 capture in gas-liquid membrane contactor. Appl Surf Sci. 436:670–681. doi:10.1016/j.apsusc.2017.11.263
  • Manzolini G, Sanchez Fernandez E, Rezvani S, Macchi E, Goetheer ELV, Vlugt TJH. 2015. Economic assessment of novel amine based CO2 capture technologies integrated in power plants based on European Benchmarking Task Force methodology. Appl Energy. 138:546–558. doi:10.1016/j.apenergy.2014.04.066
  • Mat NC, Lipscomb GG. 2017. Membrane process optimization for carbon capture. Int J Greenh Gas Con. 62:1–12. doi:10.1016/j.ijggc.2017.04.002
  • Mathieu P, Bolland O. 2013. Comparison of Costs for Natural gas Power Generation with CO2 Capture. Energy Procedia. 37:2406–2419. doi:10.1016/j.egypro.2013.06.122
  • Merkel TC, Lin H, Wei X, Baker R. 2010. Power plant post-combustion carbon dioxide capture: An opportunity for membranes. J Membr Sci. 359(1-2):126–139. doi:10.1016/j.memsci.2009.10.041
  • Merlet RB, Pizzoccaro-Zilamy M-A, Nijmeijer A, Winnubst L. 2020. Hybrid ceramic membranes for organic solvent nanofiltration: State-of-the-art and challenges. J Membr Sci. 599:117839. doi:10.1016/j.memsci.2020.117839
  • Moioli S, Pellegrini LA, Ho MT, Wiley DE. 2019. A comparison between amino acid based solvent and traditional amine solvent processes for CO2 removal. Chem Eng Res Des. 146:509–517. doi:10.1016/j.cherd.2019.04.035
  • Ngo JQ, Lee ST, Jawad ZA, Ahmad AL, Lee RJ, Yeap SP, Sum JY. 2020. The influence of cellulose acetate butyrate membrane structure on the improvement of CO2/N2 separation. Chem Eng Commun. 207(12):1707–1718. doi:10.1080/00986445.2019.1680365
  • Nimmanterdwong P, Chalermsinsuwan B, Piumsomboon P. 2017. Emergy analysis of three alternative carbon dioxide capture processes. Energy. 128:101–108. doi:10.1016/j.energy.2017.03.154
  • Obek CA, Ayittey FK, Saptoro A. 2019. Improved process modifications of aqueous ammonia-based CO2 capture system. MATEC Web Conf. 268:02004. doi:10.1051/matecconf/201926802004
  • Pagliero M, Bottino A, Comite A, Costa C. 2020. Novel hydrophobic PVDF membranes prepared by nonsolvent induced phase separation for membrane distillation. J Membr Sci. 596:117575. doi:10.1016/j.memsci.2019.117575
  • Panja P, Pack TX, Deo M. 2021. Operational optimization of absorption column in capturing CO2 from flue gas in coal-fired power plant. Chem Eng Commun. 208(9):1344–1357. doi:10.1080/00986445.2020.1774375
  • Puppolo MM, Hughey JR, Weber B, Dillon T, Storey D, Cerkez E, Jansen-Varnum S. 2017. Plasma modification of microporous polymer membranes for application in biomimetic dissolution studies. AAPS Open. 3(1):9. doi:10.1186/s41120-017-0019-4
  • Ren L-X, Chang F-L, Kang D-Y, Chen C-L. 2020. Hybrid membrane process for post-combustion CO2 capture from coal-fired power plant. J Membr Sci. 603:118001. doi:10.1016/j.memsci.2020.118001
  • Resnik KP, Yeh JT, Pennline HW. 2004. Aqua ammonia process for simultaneous removal of CO2, SO2 and NOx. IJETM. 4(1/2):89–104. doi:10.1504/IJETM.2004.004634
  • Rinprasertmeechai S, Chavadej S, Rangsunvigit P, Kulprathipanja S. 2012. Carbon Dioxide Removal from Flue Gas Using Amine-Based Hybrid Solvent Absorption. Int J Chem Molecular Eng. 6(4):284–288. 10.5281/zenodo.1332828.
  • Rosli A, Ahmad AL, Lim JK, Low SC. 2017. Advances in Liquid Absorbents for CO2 Capture: A Review. JPS. 28(Suppl. 1):121–144. doi:10.21315/jps2017.28.s1.8
  • Rosli A, Ahmad AL, Low SC. 2019. Anti-wetting polyvinylidene fluoride membrane incorporated with hydrophobic polyethylene-functionalized-silica to improve CO2 removal in membrane gas absorption. Sep Purif Technol. 221:275–285. doi:10.1016/j.seppur.2019.03.094
  • Rosli A, Ahmad AL, Low SC. 2020a. Functionalization of silica nanoparticles to reduce membrane swelling in CO2 absorption process. J Chem Technol Biotechnol. 95(4):1073–1084. doi:10.1002/jctb.6289
  • Rosli A, Ahmad AL, Low SC. 2020b. Enhancing membrane hydrophobicity using silica end-capped with organosilicon for CO2 absorption in membrane contactor. Sep Purif Technol. 251:117429. doi:10.1016/j.seppur.2020.117429
  • Rosli A, Paul SAS, Low SC. 2021. Computational analysis of atomic binding energy for organosilicon-low-density polyethylene-coated silica embedded in polyvinylidene fluoride composite membrane for membrane gas absorption. Int J Energy Res. 45(10):15372–15388. doi:10.1002/er.6810
  • Roussanaly S. 2019. Calculating CO2 avoidance costs of Carbon Capture and Storage from industry. Carbon Manag. 10(1):105–112. doi:10.1080/17583004.2018.1553435
  • Roussanaly S, Anantharaman R, Lindqvist K, Hagen B. 2018. A new approach to the identification of high-potential materials for cost-efficient membrane-based post-combustion CO2 capture. Sustainable Energy Fuels. 2(6):1225–1243. doi:10.1039/C8SE00039E
  • Roussanaly S, Anantharaman R, Lindqvist K, Zhai H, Rubin E. 2016. Membrane properties required for post-combustion CO2 capture at coal-fired power plants. J Membr Sci. 511:250–264. doi:10.1016/j.memsci.2016.03.035
  • Roussanaly S, Lindqvist K, Anantharaman R, Jakobsen J. 2014. A Systematic Method for Membrane CO2 Capture Modeling and Analysis. Energy Procedia. 63:217–224. doi:10.1016/j.egypro.2014.11.023
  • Shimada K, Seekkuarachchi IN, Kumazawa H. 2006. Absorption of CO2 into Aqueous Solutions of Sterically Hindered Methyl Aminoethanol Using a Hydrophobic Microporous Hollow Fiber Contained Contactor. Chem Eng Commun. 193(1):38–54. doi:10.1080/009864490923484
  • Song QQ, Jiang QZ, Song ZZ, Yuan B, Song WJ. 2013. Economic Evaluation of CO2 Separation Technologies in Chinese Refineries. AMR. 864-867:1725–1731. doi:10.4028/www.scientific.net/AMR.864-867.1725
  • Tang H, Zhang Y, Wang F, Zhang H, Guo Y. 2016. Long-Term Stability of Polytetrafluoroethylene (PTFE) Hollow Fiber Membranes for CO2 Capture. Energy Fuels. 30(1):492–503. doi:10.1021/acs.energyfuels.5b01789
  • Teoh GH, Chin JY, Ooi BS, Jawad ZA, Leow HTL, Low SC. 2020. Superhydrophobic membrane with hierarchically 3D-microtexture to treat saline water by deploying membrane distillation. J Water Process Eng. 37:101528. doi:10.1016/j.jwpe.2020.101528
  • Turi DM, Ho M, Ferrari MC, Chiesa P, Wiley DE, Romano MC. 2017. CO2 capture from natural gas combined cycles by CO2 selective membranes. Int J Greenh Gas Con. 61:168–183. doi:10.1016/j.ijggc.2017.03.022
  • Valencia-Marquez D, Flores-Tlacuahuac A, Ricardez-Sandoval L. 2015. Technoeconomic and Dynamical Analysis of a CO2 Capture Pilot-Scale Plant Using Ionic Liquids. Ind Eng Chem Res. 54(45):11360–11370. doi:10.1021/acs.iecr.5b02544
  • van der Spek M, Sanchez Fernandez E, Eldrup NH, Skagestad R, Ramirez A, Faaij A. 2017. Unravelling uncertainty and variability in early stage techno-economic assessments of carbon capture technologies. Int J Greenh Gas Con. 56:221–236. doi:10.1016/j.ijggc.2016.11.021
  • Wang H, Liu Z, Wang E, Yuan R, Gao D, Zhang X, Zhu Y. 2015. A robust superhydrophobic PVDF composite coating with wear/corrosion-resistance properties. Appl Surf Sci. 332:518–524. doi:10.1016/j.apsusc.2015.01.213
  • Wei X, Zhao B, Li X-M, Wang Z, He B-Q, He T, Jiang B. 2012. CF4 plasma surface modification of asymmetric hydrophilic polyethersulfone membranes for direct contact membrane distillation. J Membr Sci. 407-408:164–175. doi:10.1016/j.memsci.2012.03.031
  • Więcław-Solny L, Tatarczuk A, Stec M, Krótki A. 2014. Advanced CO2 Capture Pilot Plant at Tauron’s coal-fired Power Plant: Initial Results and Further Opportunities. Energy Procedia. 63:6318–6322. doi:10.1016/j.egypro.2014.11.664
  • Wu X, Zhao B, Wang L, Zhang Z, Zhang H, Zhao X, Guo X. 2016. Hydrophobic PVDF/graphene hybrid membrane for CO2 absorption in membrane contactor. J Membr Sci. 520:120–129. doi:10.1016/j.memsci.2016.07.025
  • Xu G, Wu Y, Yang Y, Zhang K, Song X. 2013. A novel integrated system with power generation, CO2 capture, and heat supply. Appl Therm Eng. 61(2):110–120. doi:10.1016/j.applthermaleng.2013.07.016
  • Yan S, Fang M, Wang Z, Xue J, Luo Z. 2011. Economic analysis of CO2 separation from coal-fired flue gas by chemical absorption and membrane absorption technologies in China. Energy Procedia. 4:1878–1885. doi:10.1016/j.egypro.2011.02.066
  • Yan S, Fang M, Zhang W, Zhong W, Luo Z, Cen K. 2008. Comparative analysis of CO2 separation from flue gas by membrane gas absorption technology and chemical absorption technology in China. Energy Convers Manag. 49(11):3188–3197. doi:10.1016/j.enconman.2008.05.027
  • Yang C, Li X-M, Gilron J, Kong D, Yin Y, Oren Y, Linder C, He T. 2014. CF4 plasma-modified superhydrophobic PVDF membranes for direct contact membrane distillation. J Membr Sci. 456:155–161. doi:10.1016/j.memsci.2014.01.013
  • Yu X, An L, Yang J, Tu S-T, Yan J. 2015. CO2 capture using a superhydrophobic ceramic membrane contactor. J Membr Sci. 496:1–12. doi:10.1016/j.memsci.2015.08.062
  • Yun S, Oh S-Y, Kim J-K. 2020. Techno-economic assessment of absorption-based CO2 capture process based on novel solvent for coal-fired power plant. Appl Energy. 268:114933. doi:10.1016/j.apenergy.2020.114933
  • Zha D, Mei S, Wang Z, Li H, Shi Z, Jin Z. 2011. Superhydrophobic polyvinylidene fluoride/graphene porous materials. Carbon. 49(15):5166–5172. doi:10.1016/j.carbon.2011.07.032
  • Zhai H, Rubin ES. 2013. Techno-Economic Assessment of Polymer Membrane Systems for Postcombustion Carbon Capture at Coal-Fired Power Plants. Environ Sci Technol. 47(6):3006–3014. doi:10.1021/es3050604
  • Zhang X, He X, Gundersen T. 2013. Post-combustion Carbon Capture with a Gas Separation Membrane: Parametric Study, Capture Cost, and Exergy Analysis. Energy Fuels. 27(8):4137–4149. doi:10.1021/ef3021798
  • Zhang L, Qu R, Sha Y, Wang X, Yang L. 2015. Membrane gas absorption for CO2 capture from flue gas containing fine particles and gaseous contaminants. Int J Greenh Gas Con. 33:10–17. doi:10.1016/j.ijggc.2014.11.017
  • Zhao F, Ma Z, Xiao K, Xiang C, Wang H, Huang X, Liang S. 2018. Hierarchically textured superhydrophobic polyvinylidene fluoride membrane fabricated via nanocasting for enhanced membrane distillation performance. Desalination. 443:228–236. doi:10.1016/j.desal.2018.06.003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.