1,033
Views
5
CrossRef citations to date
0
Altmetric
Reviews

A review on reaction mechanisms and catalysts of methanol to olefins process

& ORCID Icon

References

  • Abramova A. 2010. Synthesis of ethylene and propylene on a SAPO-34 silica—alumina—phosphate catalyst. Catal Ind. 2(1):29–37. doi:10.1134/S2070050410010058
  • Aghaei E, Haghighi M. 2014. Enhancement of catalytic lifetime of nanostructured SAPO-34 in conversion of biomethanol to light olefins. Microporous Mesoporous Mater. 196:179–190. doi:10.1016/j.micromeso.2014.05.011
  • Aghaei E, Haghighi M. 2015. Effect of crystallization time on properties and catalytic performance of nanostructured SAPO-34 molecular sieve synthesized at high temperatures for conversion of methanol to light olefins. " Powder Technol. 269:358–370. doi:10.1016/j.powtec.2014.09.036
  • Aghamohammadi S, Haghighi M. 2015. Dual-template synthesis of nanostructured CoAPSO-34 used in methanol to olefins: Effect of template combinations on catalytic performance and coke formation. Chem Engin J. 264:359–375. doi:10.1016/j.cej.2014.11.102
  • Aghamohammadi S, Haghighi M. 2019. Spray-dried zeotype/clay nanocatalyst for methanol to light olefins in fluidized bed reactor: Comparison of active and non-active filler. Appl Clay Sci. 170:70–85. doi:10.1016/j.clay.2019.01.006
  • Aghamohammadi S, Haghighi M, Charghand M. 2014. Methanol conversion to light olefins over nanostructured CeAPSO-34 catalyst: thermodynamic analysis of overall reactions and effect of template type on catalytic properties and performance. Mater Res Bull. 50:462–475. doi:10.1016/j.materresbull.2013.11.014
  • Ahmad MS, Cheng CK, Bhuyar P, Atabani AE, Pugazhendhi A, Chi NTL, Witoon T, Lim JW, Juan JC. 2021. Effect of reaction conditions on the lifetime of SAPO-34 catalysts in methanol to olefins process–A review. Fuel. 283:118851. doi:10.1016/j.fuel.2020.118851
  • Ahmadpour J, Taghizadeh M. 2015. Catalytic conversion of methanol to propylene over high-silica mesoporous ZSM-5 zeolites prepared by different combinations of mesogenous templates. J Nat Gas Sci Eng. 23:184–194. doi:10.1016/j.jngse.2015.01.035
  • Ahmadpour J, Taghizadeh M. 2015. Selective production of propylene from methanol over high-silica mesoporous ZSM-5 zeolites treated with NaOH and NaOH/tetrapropylammonium hydroxide. CR Chim. 18(8):834–847. doi:10.1016/j.crci.2015.05.002
  • Ali MA, Al-Baghli NA, Nisar M, Malaibari ZO, Abutaleb A, Ahmed S. 2019. Selective production of propylene from methanol over monolith-supported modified ZSM-5 catalysts. Energy Fuels. 33(2):1458–1466. doi:10.1021/acs.energyfuels.8b04020
  • Al-Jarallah AM, El-Nafaty UA, Abdillahi MM. 1997. Effects of metal impregnation on the activity, selectivity and deactivation of a high silica MFI zeolite when converting methanol to light alkenes. Appl Catal, A. 154(1-2):117–127. doi:10.1016/S0926-860X(96)00379-1
  • Alwahabi SM, Froment GF. 2004. Conceptual reactor design for the methanol-to-olefins process on SAPO-34. Ind Eng Chem Res. 43(17):5112–5122. doi:10.1021/ie040042m
  • Alwahabi SM, Froment GF. 2004. Single event kinetic modeling of the methanol-to-olefins process on SAPO-34. Ind Eng Chem Res. 43(17):5098–5111. doi:10.1021/ie040041u
  • Arstad B, Kolboe S. 2001. The reactivity of molecules trapped within the SAPO-34 cavities in the methanol-to-hydrocarbons reaction. J Am Chem Soc. 123(33):8137–8138. doi:10.1021/ja010668t
  • Arstad B, Nicholas JB, Haw JF. 2004. Theoretical study of the methylbenzene side-chain hydrocarbon pool mechanism in methanol to olefin catalysis. J Am Chem Soc. 126(9):2991–3001. doi:10.1021/ja035923j
  • Auerbach SM, Carrado KA, et al. 2003. Handbook of zeolite science and technology, CRC press, Marcel Dekker Inc.
  • Azarhoosh MJ, Halladj R, Askari S, Aghaeinejad-Meybodi A. 2019. Performance analysis of ultrasound-assisted synthesized nano-hierarchical SAPO-34 catalyst in the methanol-to-lights-olefins process via artificial intelligence methods. Ultrason Sonochem. 58(104646):104646. doi:10.1016/j.ultsonch.2019.104646
  • Baliban RC, Elia JA, Weekman V, Floudas CA. 2012. Process synthesis of hybrid coal, biomass, and natural gas to liquids via Fischer–Tropsch synthesis, ZSM-5 catalytic conversion, methanol synthesis, methanol-to-gasoline, and methanol-to-olefins/distillate technologies. Comput Chem Eng. 47:29–56. doi:10.1016/j.compchemeng.2012.06.032
  • Barakov R, Shcherban N, Yaremov P, Bezverkhyy I, Baranchikov A, Trachevskii V, Tsyrina V, Ilyin V. 2017. Synthesis of micro-mesoporous aluminosilicates on the basis of ZSM-5 zeolite using dual-functional templates at presence of micellar and molecular templates. Microporous Mesoporous Mater. 237:90–107. doi:10.1016/j.micromeso.2016.09.009
  • Behbahani RM, Mehr AS. 2014. Studying activity, product distribution and lifetime of Sr promoted alkali modified low Si ZSM-5 catalyst in MTO process. J Nat Gas Sci Eng. 18:433–438. doi:10.1016/j.jngse.2014.03.024
  • Beheshti MS, Behzad M, Ahmadpour J, Arabi H. 2020. Modification of H-[B]-ZSM-5 zeolite for methanol to propylene (MTP) conversion: Investigation of extrusion and steaming treatments on physicochemical characteristics and catalytic performance. Microporous Mesoporous Mater. 291(109699):109699. doi:10.1016/j.micromeso.2019.109699
  • Bjørgen M, Bonino F, Arstad B, Kolboe S, Lillerud K-P, Zecchina A, Bordiga S. 2005. Persistent methylbenzenium ions in protonated zeolites: The required proton affinity of the guest hydrocarbon. Chemphyschem. 6(2):232–235. doi:10.1002/cphc.200400422
  • Bjørgen M, Bonino F, Kolboe S, Lillerud K-P, Zecchina A, Bordiga S. 2003. Spectroscopic evidence for a persistent benzenium cation in zeolite H-beta. J Am Chem Soc. 125(51):15863–15868. doi:10.1021/ja037073d
  • Bjørgen M, Joensen F, Lillerud K-P, Olsbye U, Svelle S. 2009. The mechanisms of ethene and propene formation from methanol over high silica H-ZSM-5 and H-beta. Catal Today. 142(1-2):90–97. doi:10.1016/j.cattod.2009.01.015
  • Bjørgen M, Joensen F, Spangsberg Holm M, Olsbye U, Lillerud K-P, Svelle S. 2008. Methanol to gasoline over zeolite H-ZSM-5: Improved catalyst performance by treatment with NaOH. Appl Catal, A. 345(1):43–50. doi:10.1016/j.apcata.2008.04.020
  • Bjørgen M, Olsbye U, et al. 2003. Coke precursor formation and zeolite deactivation: mechanistic insights from hexamethylbenzene conversion. J Catal. 215(1):30–44. doi:10.1016/S0021-9517(02)00050-7
  • Bjørgen M, Olsbye U, et al. 2004. The methanol-to-hydrocarbons reaction: insight into the reaction mechanism from [12C] benzene and [13C] methanol coreactions over zeolite H-beta. J Catal. 221(1):1–10. doi:10.1016/S0021-9517(03)00284-7
  • Bjørgen M, Svelle S, Joensen F, Nerlov J, Kolboe S, Bonino F, Palumbo L, Bordiga S, Olsbye U. 2007. Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: On the origin of the olefinic species. J Catal. 249(2):195–207. doi:10.1016/j.jcat.2007.04.006
  • Blaszkowski SR, van Santen RA. 1997. Theoretical study of C − C bond formation in the methanol-to-gasoline process. J Am Chem Soc. 119(21):5020–5027. doi:10.1021/ja963530x
  • Blaszkowski SR, van Santen RA. 1997. Theoretical study of the mechanism of surface methoxy and dimethyl ether formation from methanol catalyzed by zeolitic protons. J Phys Chem B. 101(13):2292–2305. doi:10.1021/jp962006+
  • Bos ANR, Tromp PJJ, Akse HN. 1995. Conversion of methanol to lower olefins. Kinetic modeling, reactor simulation, and selection. Ind Eng Chem Res. 34(11):3808–3816. doi:10.1021/ie00038a018
  • Chae H-J, Park SS, Shin YH, Park MB. 2018. Synthesis and characterization of nanocrystalline TiAPSO-34 catalysts and their performance in the conversion of methanol to light olefins. Microporous Mesoporous Mater. 259:60–66. doi:10.1016/j.micromeso.2017.09.035
  • Chaikittisilp W, Suzuki Y, Mukti RR, Suzuki T, Sugita K, Itabashi K, Shimojima A, Okubo T. 2013. Formation of hierarchically organized zeolites by sequential intergrowth. Angew Chem. 125(12):3439–3443. doi:10.1002/ange.201209638
  • Chal R, Gérardin C, Bulut M, van Donk S. 2011. Overview and industrial assessment of synthesis strategies towards zeolites with mesopores. ChemCatChem. 3(1):67–81. doi:10.1002/cctc.201000158
  • Chang CD. 1980. A kinetic model for methanol conversion to hydrocarbons. Chem Eng Sci. 35(3):619–622. doi:10.1016/0009-2509(80)80011-X
  • Chang CD. 1983. Hydrocarbons from methanol. Catal Rev Sci Engin. 25(1):1–118. doi:10.1080/01614948308078874
  • Chang CD, Silvestri AJ. 1977. The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts. J Catal. 47(2):249–259. doi:10.1016/0021-9517(77)90172-5
  • Charghand M, Haghighi M, Aghamohammadi S. 2014. The beneficial use of ultrasound in synthesis of nanostructured Ce-doped SAPO-34 used in methanol conversion to light olefins. Ultrason Sonochem. 21(5):1827–1838. doi:10.1016/j.ultsonch.2014.03.011
  • Charghand M, Haghighi M, Saedy S, Aghamohammadi S. 2014. Efficient hydrothermal synthesis of nanostructured SAPO-34 using ultrasound energy: Physicochemical characterization and catalytic performance toward methanol conversion to light olefins. Adv Powder Technol. 25(6):1728–1736. doi:10.1016/j.apt.2014.06.022
  • Chen D, Grønvold A, Moljord K, Holmen A. 2007. Methanol conversion to light olefins over SAPO-34: Reaction network and deactivation kinetics. Ind Eng Chem Res. 46(12):4116–4123. doi:10.1021/ie0610748
  • Chen J, Liang T, Li J, Wang S, Qin Z, Wang P, Huang L, Fan W, Wang J. 2016. Regulation of framework aluminum siting and acid distribution in H-MCM-22 by boron incorporation and its effect on the catalytic performance in methanol to hydrocarbons. ACS Catal. 6(4):2299–2313. doi:10.1021/acscatal.5b02862
  • Chen X-D, Li X-G, Li H, Han J-J, Xiao W-D. 2018. Interaction between binder and high silica HZSM-5 zeolite for methanol to olefins reactions. Chem Eng Sci. 192:1081–1090. doi:10.1016/j.ces.2018.08.047
  • Chen N, Reagan W. 1979. Evidence of autocatalysis in methanol to hydrocarbon reactions over zeolite catalysts. J Catal. 59(1):123–129. doi:10.1016/S0021-9517(79)80050-0
  • Chen H, Wang Y, Meng F, Li H, Wang S, Sun C, Wang S, Wang X. 2016. Conversion of methanol to propylene over nano-sized ZSM-5 zeolite aggregates synthesized by a modified seed-induced method with CTAB. RSC Adv. 6(80):76642–76651. doi:10.1039/C6RA14753D
  • Chen H, Wang Y, Meng F, Sun C, Li H, Wang Z, Gao F, Wang X, Wang S. 2017. Aggregates of superfine ZSM-5 crystals: the effect of NaOH on the catalytic performance of methanol to propylene reaction. Microporous Mesoporous Mater. 244:301–309. doi:10.1016/j.micromeso.2017.02.014
  • Chen H, Wang Y, Sun C, Wang X, Wang C. 2018. Organosilane surfactant-directed synthesis of hierarchical ZSM-5 zeolites with improved catalytic performance in methanol-to-propylene reaction. Industr Engin Chem Res. 112(32):10–10966. doi:10.1016/j.catcom.2018.04.017
  • Chen H, Wang Q, Zhang X, Wang L. 2014. Hydroconversion of jatropha oil to alternative fuel over hierarchical ZSM-5. Ind Eng Chem Res. 53(51):19916–19924. doi:10.1021/ie503799t
  • Cho HS, Ryoo R. 2012. Synthesis of ordered mesoporous MFI zeolite using CMK carbon templates. Microporous Mesoporous Mater. 151:107–112. doi:10.1016/j.micromeso.2011.11.007
  • Choi M, Cho HS, Srivastava R, Venkatesan C, Choi D-H, Ryoo R. 2006. Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity. Nat Mater. 5(9):718–723. doi:10.1038/nmat1705
  • Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R. 2009. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature. 461(7261):246–249. doi:10.1038/nature08288
  • Christensen CH, Johannsen K, Schmidt I, Christensen CH. 2003. Catalytic benzene alkylation over mesoporous zeolite single crystals: improving activity and selectivity with a new family of porous materials. J Am Chem Soc. 125(44):13370–13371. doi:10.1021/ja037063c
  • Corma A. 1997. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem Rev. 97(6):2373–2420. doi:10.1021/cr960406n
  • Cui N, Guo H, Zhou J, Li L, Guo L, Hua Z. 2020. Regulation of framework Al distribution of high-silica hierarchically structured ZSM-5 zeolites by boron-modification and its effect on materials catalytic performance in methanol-to-propylene reaction. Microporous Mesoporous Mater. 306:110411. doi:10.1016/j.micromeso.2020.110411
  • Cui Z-M, Liu Q, Song W-G, Wan L-J. 2006. Insights into the mechanism of methanol-to-olefin conversion at zeolites with systematically selected framework structures. Angew Chem Int Ed Engl. 45(39):6512–6515. doi:10.1002/anie.200602488
  • Cui T-L, Lv L-B, Zhang W-B, Li X-H, Chen J-S. 2016. Programmable synthesis of mesoporous ZSM-5 nanocrystals as selective and stable catalysts for the methanol-to-propylene process. Catal Sci Technol. 6(14):5262–5266. doi:10.1039/C6CY00379F
  • Dahl IM, Kolboe S. 1993. On the reaction mechanism for propene formation in the MTO reaction over SAPO-34. Catal Lett. 20(3-4):329–336. doi:10.1007/BF00769305
  • Dahl IM, Kolboe S. 1994. On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34: I. Isotopic labeling studies of the co-reaction of ethene and methanol. J Catal. 149(2):458–464. doi:10.1006/jcat.1994.1312
  • Dahl IM, Kolboe S. 1996. On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34: 2. Isotopic labeling studies of the co-reaction of propene and methanol. J Catal. 161(1):304–309. doi:10.1006/jcat.1996.0188
  • Dehertog W, Froment G. 1991. Production of light alkenes from methanol on ZSM-5 catalysts. Appl Catal. 71(1):153–165. doi:10.1016/0166-9834(91)85012-K
  • Deng Z, Zhang Y, Zhu K, Qian G, Zhou X. 2015. Carbon nanotubes as transient inhibitors in steam-assisted crystallization of hierarchical ZSM-5 zeolites. Mater Lett. 159:466–469. doi:10.1016/j.matlet.2015.07.062
  • Derouane EG. 1978. Elucidation of the mechanism of conversion of methanol and ethanol to hydrocarbons on a new type of synthetic zeolite. J Catal. 53(1):40–55. doi:10.1016/0021-9517(78)90006-4
  • Dessau R. 1986. On the H-ZSM-5 catalyzed formation of ethylene from methanol or higher olefins. J Catal. 99(1):111–116. doi:10.1016/0021-9517(86)90204-6
  • Devulapelli VG, Sahle-Demessie E. 2008. Catalytic oxidation of dimethyl sulfide with ozone: Effects of promoter and physico-chemical properties of metal oxide catalysts. Appl Catal, A. 348(1):86–93. doi:10.1016/j.apcata.2008.06.038
  • Ding J, Han L, Wen M, Zhao G, Liu Y, Lu Y. 2015. Synthesis of monolithic Al-fiber@ HZSM-5 core-shell catalysts for methanol-to-propylene reaction. Catal Commun. 72:156–160. doi:10.1016/j.catcom.2015.09.026
  • Ding J, Jia Y, Chen P, Zhao G, Liu Y, Lu Y. 2019. Thin-felt hollow-B-ZSM-5/SS-fiber catalyst for methanol-to-propylene: Toward remarkable stability improvement from mesoporosity-dependent diffusion enhancement. Chem Engin J. 361:588–598. doi:10.1016/j.cej.2018.12.108
  • Doering WvE, Saunders M, Boyton HG, Earhart HW, Wadley EF, Edwards WR, Laber G. 1958. The 1, 1, 2, 3, 4, 5, 6-heptamethylbenzenonium ion. " Tetrahedron. 4(1-2):178–185. doi:10.1016/0040-4020(58)88016-3
  • Dowdy TE. 1999. Coal gasification and hydrogen production system and method. Google Patents.
  • Dubois DR, Obrzut DL, Liu J, Thundimadathil J, Adekkanattu PM, Guin JA, Punnoose A, Seehra MS. 2003. Conversion of methanol to olefins over cobalt-, manganese-and nickel-incorporated SAPO-34 molecular sieves. Fuel Process Technol. 83(1-3):203–218. doi:10.1016/S0378-3820(03)00069-9
  • Ebadzadeh E, Khademi MH, Beheshti M. 2021. A kinetic model for methanol-to-propylene process in the presence of co-feeding of C4-C5 olefin mixture over H-ZSM-5 catalyst. Chem Engin J. 405:126605. doi:10.1016/j.cej.2020.126605
  • Ebrahimi A, Haghighi M, Aghamohammadi S. 2020. Effect of calcination temperature and composition on the spray-dried microencapsulated nanostructured SAPO-34 with kaolin for methanol conversion to ethylene and propylene in fluidized bed reactor. Microporous Mesoporous Mater. 297:110046. doi:10.1016/j.micromeso.2020.110046
  • Fang Y, Hu H. 2006. An ordered mesoporous aluminosilicate with completely crystalline zeolite wall structure. J Am Chem Soc. 128(33):10636–10637. doi:10.1021/ja061182l
  • Feng R, Wang X, Lin J, Li Z, Hou K, Yan X, Hu X, Yan Z, Rood MJ. 2018. Two-stage glucose-assisted crystallization of ZSM-5 to improve methanol to propylene (MTP). Microporous Mesoporous Mater. 270:57–66. doi:10.1016/j.micromeso.2018.05.003
  • Feng R, Yan X, Hu X, Wu J, Yan Z. 2020. Direct synthesis of b-axis oriented H-form ZSM-5 zeolites with an enhanced performance in the methanol to propylene reaction. Microporous Mesoporous Mater. 302:110246. doi:10.1016/j.micromeso.2020.110246
  • Feng R, Yan X, Hu X, Yan Z, Lin J, Li Z, Hou K, Rood MJ. 2018. Surface dealumination of micro-sized ZSM-5 for improving propylene selectivity and catalyst lifetime in methanol to propylene (MTP) reaction. Catal Commun. 109:1–5. doi:10.1016/j.catcom.2018.02.005
  • Feng R, Yan X, Hu X, Zhang Y, Wu J, Yan Z. 2020. Phosphorus-modified b-axis oriented hierarchical ZSM-5 zeolites for enhancing catalytic performance in a methanol to propylene reaction. Appl Catal, A. 594:117464. doi:10.1016/j.apcata.2020.117464
  • Feng R, Yan X, Hu X, Zhang Y, Wu J, Yan Z. 2020. The effect of co-feeding ethanol on a methanol to propylene (MTP) reaction over a commercial MTP catalyst. Appl Catal, A. 592:117429. doi:10.1016/j.apcata.2020.117429
  • Fernández Y, Arenillas A, Díez MA, Pis JJ, Menéndez JA. 2009. Pyrolysis of glycerol over activated carbons for syngas production. J Anal Appl Pyrolysis. 84(2):145–150. doi:10.1016/j.jaap.2009.01.004
  • Fournier, J.-F., E. S. Wagner, et al. 2019. Recycling system and process of a methanol-to-propylene and steam cracker plant, Google Patents.
  • Froment, G. (1992). Kinetics and reactor design in the thermal cracking for olefins production. Chem Engin Sci 47(9):2163–2177.
  • Fujitsuka H, Oshima S, et al. 2020. Synthesis of Rh nanoparticles encapsulated in ZSM-5 and its application for methanol to olefin over acid sites with simultaneous production of hydrogen over Rh. Catal Today. 375:360–368.
  • Fujiwara M, Mimura N, Sato O, Yamaguchi A. 2019. Surface modification of H-ZSM-5 with organo-disilane compound for propylene production from dimethyl ether. Microporous Mesoporous Mater. 280:219–226. doi:10.1016/j.micromeso.2019.02.005
  • Gao M, Li H, Liu W, Xu Z, Peng S, Yang M, Ye M, Liu Z. 2020. Imaging spatiotemporal evolution of molecules and active sites in zeolite catalyst during methanol-to-olefins reaction. Nat Commun. 11(1):1–11. doi:10.1038/s41467-020-17355-6
  • Gayubo AG, Aguayo AT, Alonso A, Atutxa A, Bilbao J. 2005. Reaction scheme and kinetic modelling for the MTO process over a SAPO-18 catalyst. Catal Today. 106(1-4):112–117. doi:10.1016/j.cattod.2005.07.133
  • Gayubo AG, Aguayo AT, Sánchez del Campo AE, Tarrío AM, Bilbao J. 2000. Kinetic modeling of methanol transformation into olefins on a SAPO-34 catalyst. Ind Eng Chem Res. 39(2):292–300. doi:10.1021/ie990188z
  • Gluhoi AC, Nieuwenhuys BE. 2007. Structural and chemical promoter effects of alkali (earth) and cerium oxides in CO oxidation on supported gold. Catal Today. 122(3-4):226–232. doi:10.1016/j.cattod.2007.01.066
  • Gorzin F, Towfighi Darian J, Yaripour F, Mousavi SM. 2019. Synthesis of highly crystalline nanosized HZSM-5 catalyst employing combined hydrothermal and sonochemical method: Investigation of ultrasonic parameters on physico-chemical and catalytic performance in methanol to propylene reaction. J Solid State Chem. 271:8–22. doi:10.1016/j.jssc.2018.12.016
  • Groen JC, Moulijn JA, Pérez-Ramírez J. 2006. Desilication: on the controlled generation of mesoporosity in MFI zeolites. J Mater Chem. 16(22):2121–2131. doi:10.1039/B517510K
  • Groen J, Sano T, Moulijn J, Perezramirez J. 2007. Alkaline-mediated mesoporous mordenite zeolites for acid-catalyzed conversions. J Catal. 251(1):21–27. doi:10.1016/j.jcat.2007.07.020
  • Guo W, Wu W, Luo M, Xiao W. 2013. Modeling of diffusion and reaction in monolithic catalysts for the methanol-to-propylene process. Fuel Process Technol. 108:133–138. doi:10.1016/j.fuproc.2012.06.005
  • Guo W, Xiao W, Luo M. 2012. Comparison among monolithic and randomly packed reactors for the methanol-to-propylene process. Chem Engin J. 207–208:734–745. doi:10.1016/j.cej.2012.07.046
  • Hadi N, Alizadeh R, Niaei A. 2017. Selective production of propylene from methanol over nanosheets of metal-substituted MFI zeolites. J Ind Eng Chem. 54:82–97. doi:10.1016/j.jiec.2017.05.021
  • Hadi N, Farzi A, Alizadeh R, Niaei A. 2020. Metal-substituted sponge-like MFI zeolites as high-performance catalysts for selective conversion of methanol to propylene. Microporous Mesoporous Mater. 306:110406. doi:10.1016/j.micromeso.2020.110406
  • Hadi N, Niaei A, et al. 2014. Development of a new kinetic model for methanol to propylene process on Mn/H-ZSM-5 catalyst. Chem Biochem Eng Q. 28(1):53–63.
  • Hadi N, Niaei A, Alizadeh R, Raeisipour J. 2018. Durable and highly selective tungsten-substituted MFI metallosilicate catalysts for the methanol-to-propylene process by designing a novel feed-supply technique. CR Chim. 21(5):523–540. doi:10.1016/j.crci.2018.01.001
  • Hadi N, Niaei A, Nabavi SR, Alizadeh R, Shirazi MN, Izadkhah B. 2016. "An intelligent approach to design and optimization of M-Mn/H-ZSM-5 (M: Ce, Cr, Fe, Ni) catalysts in conversion of methanol to propylene. J Taiwan Inst Chem Eng. 59:173–185. doi:10.1016/j.jtice.2015.09.017
  • Hadi N, Niaei A, Nabavi SR, Navaei Shirazi M, Alizadeh R. 2015. Effect of second metal on the selectivity of Mn/H-ZSM-5 catalyst in methanol to propylene process. J Ind Eng Chem. 29:52–62. doi:10.1016/j.jiec.2015.03.017
  • Hambali HU, Jalil AA, Triwahyono S, Jamian SF, Fatah NAA, Abdulrasheed AA, Siang TJ. 2021. Unique structure of fibrous ZSM-5 catalyst expedited prolonged hydrogen atom restoration for selective production of propylene from methanol. Int J Hydrogen Energy. 46(48):24652–24665. doi:10.1016/j.ijhydene.2019.11.236
  • Han Z, Zhou F, Liu Y, Qiao K, Ma H, Yu L, Wu G. 2019. Synthesis of gallium-containing ZSM-5 zeolites by the seed-induced method and catalytic performance of GaZSM-5 and AlZSM-5 during the conversion of methanol to olefins. J Taiwan Inst Chem Eng. 103:149–159. doi:10.1016/j.jtice.2019.07.005
  • Han Z, Zhou F, Zhao J, Liu Y, Ma H, Wu G. 2020. Synthesis of hierarchical GaZSM-5 zeolites by a post-treatment method and their catalytic conversion of methanol to olefins. Microporous Mesoporous Mater. 302:110194. doi:10.1016/j.micromeso.2020.110194
  • Hashemi F, Taghizadeh M, Rami MD. 2020. Polyoxometalate modified SAPO-34: A highly stable and selective catalyst for methanol conversion to light olefins. Microporous Mesoporous Mater. 295(109970):109970. doi:10.1016/j.micromeso.2019.109970
  • Haw JF. 2002. Zeolite acid strength and reaction mechanisms in catalysis. PCCP. 4(22):5431–5441. doi:10.1039/B206483A
  • Haw JF, Nicholas JB, Song W, Deng F, Wang Z, Xu T, Heneghan CS. 2000. Roles for cyclopentenyl cations in the synthesis of hydrocarbons from methanol on zeolite catalyst HZSM-5. J Am Chem Soc. 122(19):4763–4775. doi:10.1021/ja994103x
  • Haw JF, Song W, Marcus DM, Nicholas JB. 2003. The mechanism of methanol to hydrocarbon catalysis. Acc Chem Res. 36(5):317–326. doi:10.1021/ar020006o
  • Heracleous E, Lee A, Wilson K, Lemonidou A. 2005. Investigation of Ni-based alumina-supported catalysts for the oxidative dehydrogenation of ethane to ethylene: structural characterization and reactivity studies. J Catal. 231(1):159–171. doi:10.1016/j.jcat.2005.01.015
  • Huang X, Aihemaitijiang D, Xiao W-D. 2016. Co-reaction of methanol and olefins on the high silicon HZSM-5 catalyst: A kinetic study. Chem Engin J. 286:150–164. doi:10.1016/j.cej.2015.10.045
  • Huang F, Cao J, Wang L, Wang X, Liu F. 2020. Enhanced catalytic behavior for methanol to lower olefins over SAPO-34 composited with ZrO2. Chem Engin J. 380:122626. doi:10.1016/j.cej.2019.122626
  • Huang X, Li H, Li H, Xiao W-D. 2016. A computationally efficient multi-scale simulation of a multi-stage fixed-bed reactor for methanol to propylene reactions. Fuel Process Technol. 150:104–116. doi:10.1016/j.fuproc.2016.05.008
  • Huang X, Li X-G, Li H, Xiao W-D. 2017. High-performance HZSM-5/cordierite monolithic catalyst for methanol to propylene reaction: A combined experimental and modelling study. Fuel Process Technol. 159:168–177. doi:10.1016/j.fuproc.2017.01.031
  • Huang X, Li H, Xiao W-D, Chen D. 2016. Insight into the side reactions in methanol-to-olefin process over HZSM-5: A kinetic study. Chem Engin J. 299:263–275. doi:10.1016/j.cej.2016.04.065
  • Huang H, Yu M, Zhang Q, Li C. 2020. Insights into NH4-SAPO-34 preparation procedure: Effect of the number of ammonium exchange times on catalytic performance of Zn-modified SAPO-34 zeolite for methanol to olefin reaction. Microporous Mesoporous Mater. 295:109971. doi:10.1016/j.micromeso.2019.109971
  • Hu S, Shan J, Zhang Q, Wang Y, Liu Y, Gong Y, Wu Z, Dou T. 2012. Selective formation of propylene from methanol over high-silica nanosheets of MFI zeolite. Appl Catal A 445–446:215–220.
  • Hu X, Yuan L, Cheng S, Luo J, Sun H, Li S, Li L, Wang C. 2019. GeAPSO-34 molecular sieves: Synthesis, characterization and methanol-to-olefins performance. Catal Commun. 123:38–43. doi:10.1016/j.catcom.2019.02.007
  • Hu Z, Zhang H, Wang L, Zhang H, Zhang Y, Xu H, Shen W, Tang Y. 2014. Highly stable boron-modified hierarchical nanocrystalline ZSM-5 zeolite for the methanol to propylene reaction. Catal Sci Technol. 4(9):2891–2895. doi:10.1039/C4CY00376D
  • Hwang A, Johnson BA, Bhan A. 2019. Mechanistic study of methylbenzene dealkylation in methanol-to-olefins catalysis on HSAPO-34. J Catal. 369:86–94. doi:10.1016/j.jcat.2018.10.022
  • Ilias S, Bhan A. 2012. Tuning the selectivity of methanol-to-hydrocarbons conversion on H-ZSM-5 by co-processing olefin or aromatic compounds. J Catal. 290:186–192. doi:10.1016/j.jcat.2012.03.016
  • Ilias S, Khare R, Malek A, Bhan A. 2013. A descriptor for the relative propagation of the aromatic-and olefin-based cycles in methanol-to-hydrocarbons conversion on H-ZSM-5. J Catal. 303:135–140. doi:10.1016/j.jcat.2013.03.021
  • Ivanova S, Lebrun C, Vanhaecke E, Pham-Huu C, Louis B. 2009. Influence of the zeolite synthesis route on its catalytic properties in the methanol to olefin reaction. J Catal. 265(1):1–7. doi:10.1016/j.jcat.2009.03.016
  • Izadkhah B, Nabavi SR, Niaei A, Salari D, Mahmuodi Badiki T, Çaylak N. 2012. Design and optimization of Bi-metallic Ag-ZSM5 catalysts for catalytic oxidation of volatile organic compounds. J Ind Eng Chem. 18(6):2083–2091. doi:10.1016/j.jiec.2012.06.002
  • Jang H-G, Min H-K, Hong SB, Seo G. 2013. Tetramethylbenzenium radical cations as major active intermediates of methanol-to-olefin conversions over phosphorous-modified HZSM-5 zeolites. J Catal. 299:240–248. doi:10.1016/j.jcat.2012.12.014
  • Jiao Y, Fan X, Perdjon M, Yang Z, Zhang J. 2017. Vapor-phase transport (VPT) modification of ZSM-5/SiC foam catalyst using TPAOH vapor to improve the methanol-to-propylene (MTP) reaction. Appl Catal, A. 545:104–112. doi:10.1016/j.apcata.2017.07.036
  • Jiao Y, Xu S, Jiang C, Perdjon M, Fan X, Zhang J. 2018. MFI zeolite coating with intrazeolitic aluminum (acidic) gradient supported on SiC foams to improve the methanol-to-propylene (MTP) reaction. Appl Catal, A. 559:1–9. doi:10.1016/j.apcata.2018.04.006
  • Jin Y, Asaoka S, Zhang S, Li P, Zhao S. 2013. Reexamination on transition-metal substituted MFI zeolites for catalytic conversion of methanol into light olefins. Fuel Process Technol. 115:34–41. doi:10.1016/j.fuproc.2013.03.047
  • Kaarsholm M, Joensen F, Nerlov J, Cenni R, Chaouki J, Patience GS. 2007. Phosphorous modified ZSM-5: Deactivation and product distribution for MTO. Chem Eng Sci. 62(18-20):5527–5532. doi:10.1016/j.ces.2006.12.076
  • Kaarsholm M, Rafii B, Joensen F, Cenni R, Chaouki J, Patience GS. 2010. Kinetic modeling of methanol-to-olefin reaction over ZSM-5 in fluid bed. Ind Eng Chem Res. 49(1):29–38. doi:10.1021/ie900341t
  • Kaeding WW, Butter SA. 1975. Conversion of methanol and dimethyl ether. Google Patents.
  • Kazemi A, Beheshti M, et al. 2017. Influence of recycle streams of C5/C6 and C4 hydrocarbon cuts on the performance of methanol to propylene (PVM) reactors. Chem Engin Sci 172:385–394.
  • Keil FJ. 1999. Methanol-to-hydrocarbons: process technology. Microporous Mesoporous Mater. 29(1-2):49–66. doi:10.1016/S1387-1811(98)00320-5
  • Khaledi K, Haghighi M, Sadeghpour P. 2017. On the catalytic properties and performance of core-shell ZSM-5@ MnO nanocatalyst used in conversion of methanol to light olefins. Microporous Mesoporous Mater. 246:51–61. doi:10.1016/j.micromeso.2017.03.022
  • Khanmohammadi M, Amani S, Garmarudi AB, Niaei A. 2016. Methanol-to-propylene process: perspective of the most important catalysts and their behavior. Chin J Catal. 37(3):325–339. doi:10.1016/S1872-2067(15)61031-2
  • Kim M, Chae H-J, Kim T-W, Jeong K-E, Kim C-U, Jeong S-Y. 2011. Attrition resistance and catalytic performance of spray-dried SAPO-34 catalyst for MTO process: Effect of catalyst phase and acidic solution. J Ind Eng Chem. 17(3):621–627. doi:10.1016/j.jiec.2011.05.009
  • Kim J, Choi M, Ryoo R. 2010. Effect of mesoporosity against the deactivation of MFI zeolite catalyst during the methanol-to-hydrocarbon conversion process. J Catal. 269(1):219–228. doi:10.1016/j.jcat.2009.11.009
  • Kim Y, Kim J-C, Jo C, Kim T-W, Kim C-U, Jeong S-Y, Chae H-J. 2016. Structural and physicochemical effects of MFI zeolite nanosheets for the selective synthesis of propylene from methanol. Microporous Mesoporous Mater. 222:1–8. doi:10.1016/j.micromeso.2015.09.056
  • Kim J, Kim W, Seo Y, Kim J-C, Ryoo R. 2013. n-Heptane hydroisomerization over Pt/MFI zeolite nanosheets: Effects of zeolite crystal thickness and platinum location. J Catal. 301:187–197. doi:10.1016/j.jcat.2013.02.015
  • Kim S-S, Shah J, Pinnavaia TJ. 2003. Colloid-imprinted carbons as templates for the nanocasting synthesis of mesoporous ZSM-5 zeolite. Chem Mater. 15(8):1664–1668. doi:10.1021/cm021762r
  • Koempel H, Liebner W. 2007. Lurgi's Methanol To Propylene (MTP®) Report on a successful commercialisation. Stud Surf Sci Catal. 167:261–267.
  • Lee S-G, Kim H-S, Kim Y-H, Kang E-J, Lee D-H, Park C-S. 2014. Dimethyl ether conversion to light olefins over the SAPO-34/ZrO 2 composite catalysts with high lifetime. J Ind Eng Chem. 20(1):61–67. doi:10.1016/j.jiec.2013.04.026
  • Lee S-U, Lee Y-J, Kim J-R, Jeong K-E, Jeong S-Y. 2019. Cobalt-isomorphous substituted SAPO-34 via milling and recrystallization for enhanced catalytic lifetime toward methanol-to-olefin reaction. J Ind Eng Chem. 79:443–451. doi:10.1016/j.jiec.2019.07.020
  • Lesthaeghe D, Van der Mynsbrugge J, Vandichel M, Waroquier M, Van Speybroeck V. 2011. Full theoretical cycle for both ethene and propene formation during methanol‐to‐olefin conversion in H‐ZSM‐5. ChemCatChem. 3(1):208–212. doi:10.1002/cctc.201000286
  • Lesthaeghe D, Van Speybroeck V, Marin GB, Waroquier M. 2007. The rise and fall of direct mechanisms in methanol-to-olefin catalysis: An overview of theoretical contributions. Ind Eng Chem Res. 46(26):8832–8838. doi:10.1021/ie0613974
  • Li Z. 2014. New micro and mesoporous materials for the reaction of methanol to olefins. [Tesis doctoral no publicada]. Universitat Politècnica de València. doi:10.4995/Thesis/10251/44229
  • Liang T, Chen J, Qin Z, Li J, Wang P, Wang S, Wang G, Dong M, Fan W, Wang J. 2016. Conversion of methanol to olefins over H-ZSM-5 zeolite: reaction pathway is related to the framework aluminum siting. ACS Catal. 6(11):7311–7325. doi:10.1021/acscatal.6b01771
  • Li X-G, Huang X, Zhang Y-L, Li H, Xiao W-D, Wei Z. 2020. Effect of n-butanol cofeeding on the deactivation of methanol to olefin conversion over high-silica HZSM-5: A mechanism and kinetic study. Chem Eng Sci. 226:115859. doi:10.1016/j.ces.2020.115859
  • Li S, Li J, Dong M, Fan S, Zhao T, Wang J, Fan W. 2019. Strategies to control zeolite particle morphology. Chem Soc Rev. 48(3):885–907. doi:10.1039/c8cs00774h
  • Li J, Liu M, Guo X, Dai C, Song C. 2018. Fluoride-mediated nano-sized high-silica ZSM-5 as an ultrastable catalyst for methanol conversion to propylene. J Energy Chem. 27(4):1225–1230. doi:10.1016/j.jechem.2017.08.018
  • Li J, Liu M, Guo X, Dai C, Xu S, Wei Y, Liu Z, Song C. 2018. In situ aluminum migration into zeolite framework during methanol-to-propylene reaction: An innovation to design superior catalysts. Ind Eng Chem Res. 57(24):8190–8199. doi:10.1021/acs.iecr.8b00513
  • Li J, Ma H, Chen Y, Xu Z, Li C, Ying W. 2018. Conversion of methanol to propylene over hierarchical HZSM-5: the effect of Al spatial distribution. Chem Commun (Camb). 54(47):6032–6035. doi:10.1039/c8cc02042f
  • Liu J, Zhang C, Shen Z, Hua W, Tang Y, Shen W, Yue Y, Xu H. 2009. Methanol to propylene: Effect of phosphorus on a high silica HZSM-5 catalyst. Catal Commun. 10(11):1506–1509. doi:10.1016/j.catcom.2009.04.004
  • Li J, Wei Y, Chen J, Tian P, Su X, Xu S, Qi Y, Wang Q, Zhou Y, He Y, et al. 2012. Observation of heptamethylbenzenium cation over SAPO-type molecular sieve DNL-6 under real MTO conversion conditions. J Am Chem Soc. 134(2):836–839. doi:10.1021/ja209950x
  • Li J, Wei Y, Chen J, Xu S, Tian P, Yang X, Li B, Wang J, Liu Z. 2015. Cavity controls the selectivity: insights of confinement effects on MTO reaction. ACS Catal. 5(2):661–665. doi:10.1021/cs501669k
  • Li J, Wei Y, Liu G, Qi Y, Tian P, Li B, He Y, Liu Z. 2011. Comparative study of MTO conversion over SAPO-34, H-ZSM-5 and H-ZSM-22: Correlating catalytic performance and reaction mechanism to zeolite topology. Catal Today. 171(1):221–228. doi:10.1016/j.cattod.2011.02.027
  • Li J, Wei Y, Qi Y, Tian P, Li B, He Y, Chang F, Sun X, Liu Z. 2011. Conversion of methanol over H-ZSM-22: The reaction mechanism and deactivation. Catal Today. 164(1):288–292. doi:10.1016/j.cattod.2010.10.095
  • Li D, Xing B, Wang B, Li R. 2020. Activity and selectivity of methanol-to-olefin conversion over Zr-modified H-SAPO-34/H-ZSM-5 zeolites-A theoretical study. Fuel Process Technol. 199:106302. doi:10.1016/j.fuproc.2019.106302
  • Losch P, Boltz M, Louis B, Chavan S, Olsbye U. 2015. Catalyst optimization for enhanced propylene formation in the methanol-to-olefins reaction. CR Chim. 18(3):330–335. doi:10.1016/j.crci.2014.06.007
  • Lucrédio AF, Jerkiewicz G, Assaf EM. 2008. Cobalt catalysts promoted with cerium and lanthanum applied to partial oxidation of methane reactions. Appl Catal, B. 84(1-2):106–111. doi:10.1016/j.apcatb.2008.03.008
  • Ma M, Zhao X, Wang X, Gong F, Yuan F, Li Z, Zhu Y. 2020. Synthesis of small-sized SAPO-34 assisted by pluronic F127 nonionic surfactant and its catalytic performance for methanol to olefins (MTO). Catal Commun. 133:105839. doi:10.1016/j.catcom.2019.105839
  • Machoke AG, Knoke IY, Lopez-Orozco S, Schmiele M, Selvam T, Marthala VRR, Spiecker E, Unruh T, Hartmann M, Schwieger W. 2014. Synthesis of multilamellar MFI-type zeolites under static conditions: The role of gel composition on their properties. Microporous Mesoporous Mater. 190:324–333. doi:10.1016/j.micromeso.2014.02.026
  • Mei C, Wen P, Liu Z, Liu H, Wang Y, Yang W, Xie Z, Hua W, Gao Z. 2008. Selective production of propylene from methanol: Mesoporosity development in high silica HZSM-5. J Catal. 258(1):243–249. doi:10.1016/j.jcat.2008.06.019
  • Meng L, Mezari B, Goesten MG, Hensen EJM. 2017. One-step synthesis of hierarchical ZSM-5 using cetyltrimethylammonium as mesoporogen and structure-directing agent. Chem Mater. 29(9):4091–4096. doi:10.1021/acs.chemmater.7b00913
  • Mier D, Aguayo AT, Gayubo AG, Olazar M, Bilbao J. 2010. Synergies in the production of olefins by combined cracking of n-butane and methanol on a HZSM-5 zeolite catalyst. Chem Engin J. 160(2):760–769. doi:10.1016/j.cej.2010.04.016
  • Mihail R, Straja S, Maria G, Musca G, Pop G. 1983. A kinetic model for methanol conversion to hydrocarbons. Chem Eng Sci. 38(9):1581–1591. doi:10.1016/0009-2509(83)80094-3
  • Mirza K, Ghadiri M, Haghighi M, Afghan A. 2018. Hydrothermal synthesize of modified Fe, Ag and K-SAPO-34 nanostructured catalysts used in methanol conversion to light olefins. Microporous Mesoporous Mater. 260:155–165. doi:10.1016/j.micromeso.2017.10.045
  • Mol J. 2004. Industrial applications of olefin metathesis. J Mol Catal A: Chem. 213(1):39–45. doi:10.1016/j.molcata.2003.10.049
  • Mole T, Bett G, et al. 1983. Conversion of methanol to hydrocarbons over ZSM-5 zeolite: An examination of the role of aromatic hydrocarbons using 13carbon-and deuterium-labeled feeds. J Catal. 84(2):435–445. doi:10.1016/0021-9517(83)90014-3
  • Mole T, Whiteside JA, et al. 1983. Aromatic co-catalysis of methanol conversion over zeolite catalysts. J Catal. 82(2):261–266. doi:10.1016/0021-9517(83)90192-6
  • Na K, Choi M, Park W, Sakamoto Y, Terasaki O, Ryoo R. 2010. Pillared MFI zeolite nanosheets of a single-unit-cell thickness. J Am Chem Soc. 132(12):4169–4177. doi:10.1021/ja908382n
  • Na K, Choi M, Ryoo R. 2013. Recent advances in the synthesis of hierarchically nanoporous zeolites. Microporous Mesoporous Mater. 166:3–19. doi:10.1016/j.micromeso.2012.03.054
  • Na K, Jo C, Kim J, Cho K, Jung J, Seo Y, Messinger RJ, Chmelka BF, Ryoo R. 2011. Directing zeolite structures into hierarchically nanoporous architectures. Science. 333(6040):328–332. doi:10.1126/science.1204452
  • Nakagawa K, Yasumura Y, Thongprachan N, Sano N. 2011. Freeze-dried solid foams prepared from carbon nanotube aqueous suspension: Application to gas diffusion layers of a proton exchange membrane fuel cell. Chem Eng Process. 50(1):22–30. doi:10.1016/j.cep.2010.10.010
  • Nesterenko N, Aguilhon J, et al. 2016. Methanol to olefins: An insight into reaction pathways and products formation. Zeolites and Zeolite-Like Materials, Elsevier: 1:189–263. doi:10.1016/B978-0-444-63506-8.00006-9
  • Olsbye U, Bjørgen M, Svelle S, Lillerud K-P, Kolboe S. 2005. Mechanistic insight into the methanol-to-hydrocarbons reaction. Catal Today. 106(1-4):108–111. doi:10.1016/j.cattod.2005.07.135
  • Olsbye U, Svelle S, Bjørgen M, Beato P, Janssens TVW, Joensen F, Bordiga S, Lillerud KP. 2012. Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity. Angew Chem Int Ed Engl. 51(24):5810–5831. doi:10.1002/anie.201103657
  • Ono Y, Mori T. 1981. Mechanism of methanol conversion into hydrocarbons over ZSM-5 zeolite. J Chem Soc, Faraday Trans 1. 77(9):2209–2221. doi:10.1039/f19817702209
  • Pajaie HS, Taghizadeh M. 2015. Optimization of nano-sized SAPO-34 synthesis in methanol-to-olefin reaction by response surface methodology. J Ind Eng Chem. 24:59–70. doi:10.1016/j.jiec.2014.09.009
  • Panahi PN, Salari D, Niaei A, Mousavi SM. 2013. NO reduction over nanostructure M-Cu/ZSM-5 (M: Cr, Mn, Co and Fe) bimetallic catalysts and optimization of catalyst preparation by RSM. J Ind Eng Chem. 19(6):1793–1799. doi:10.1016/j.jiec.2013.02.022
  • Papari S, Mohammadrezaei A, Asadi M, Golhosseini R, Naderifar A. 2011. Comparison of two methods of iridium impregnation into HZSM-5 in the methanol to propylene reaction. Catal Commun. 16(1):150–154. doi:10.1016/j.catcom.2011.09.024
  • Park T-Y, Froment GF. 2001. Kinetic modeling of the methanol to olefins process. 1. Model formulation. Ind Eng Chem Res. 40(20):4172–4186. doi:10.1021/ie0008530
  • Park W, Yu D, Na K, Jelfs KE, Slater B, Sakamoto Y, Ryoo R. 2011. Hierarchically structure-directing effect of multi-ammonium surfactants for the generation of MFI zeolite nanosheets. Chem Mater. 23(23):5131–5137. doi:10.1021/cm201709q
  • Parlett CMA, Wilson K, Lee AF. 2013. Hierarchical porous materials: catalytic applications. Chem Soc Rev. 42(9):3876–3893. doi:10.1039/c2cs35378d
  • Peng S, Gao M, Li H, Yang M, Ye M, Liu Z. 2020. Control of surface barriers in mass transfer to modulate methanol‐to‐olefins reaction over SAPO‐34 Zeolites. Angew Chem. 132(49):22129–22132. doi:10.1002/ange.202009230
  • Pérez-Ramírez J, Abelló S, Bonilla A, Groen JC. 2009. Tailored mesoporosity development in zeolite crystals by partial detemplation and desilication. Adv Funct Mater. 19(1):164–172. doi:10.1002/adfm.200800871
  • Pérez-Uriarte P, Ateka A, Aguayo AT, Gayubo AG, Bilbao J. 2016. Kinetic model for the reaction of DME to olefins over a HZSM-5 zeolite catalyst. Chem Engin J. 302:801–810. doi:10.1016/j.cej.2016.05.096
  • Primo A, Garcia H. 2014. Zeolites as catalysts in oil refining. Chem Soc Rev. 43(22):7548–7561. doi:10.1039/c3cs60394f
  • Prinz D, Riekert L. 1988. Formation of ethene and propene from methanol on zeolite ZSM-5: I. Investigation of rate and selectivity in a batch reactor. Appl Catal. 37:139–154. doi:10.1016/S0166-9834(00)80757-5
  • Qi G, Xie Z, Yang W, Zhong S, Liu H, Zhang C, Chen Q. 2007. Behaviors of coke deposition on SAPO-34 catalyst during methanol conversion to light olefins. Fuel Process Technol. 88(5):437–441. doi:10.1016/j.fuproc.2006.11.008
  • Rahimi K, Towfighi J, Sedighi M, Masoumi S, Kooshki Z. 2016. The effects of SiO2/Al2O3 and H2O/Al2O3 molar ratios on SAPO-34 catalysts in methanol to olefins (MTO) process using experimental design. J Ind Eng Chem. 35:123–131. doi:10.1016/j.jiec.2015.12.015
  • Rahmani M, Taghizadeh M. 2017. Synthesis optimization of mesoporous ZSM-5 through desilication-reassembly in the methanol-to-propylene reaction. Reac Kinet Mech Cat. 122(1):409–432. doi:10.1007/s11144-017-1204-0
  • Roohollahi G, Kazemeini M, Mohammadrezaee A, Golhosseini R. 2013. The joint reaction of methanol and i-butane over the HZSM-5 zeolite. J Ind Eng Chem. 19(3):915–919. doi:10.1016/j.jiec.2012.10.032
  • Rostami RB, Ghavipour M, Di Z, Wang Y, Behbahani RM. 2015. Study of coke deposition phenomena on the SAPO_34 catalyst and its effects on light olefin selectivity during the methanol to olefin reaction. RSC Adv. 5(100):81965–81980. doi:10.1039/C5RA11288E
  • Rostamizadeh M, Taeb A. 2015. Highly selective Me-ZSM-5 catalyst for methanol to propylene (MTP). J Ind Eng Chem. 27:297–306. doi:10.1016/j.jiec.2015.01.004
  • Rostamizadeh M, Yaripour F. 2016. Bifunctional and bimetallic Fe/ZSM-5 nanocatalysts for methanol to olefin reaction. Fuel. 181:537–546. doi:10.1016/j.fuel.2016.05.019
  • Rostamizadeh M, Yaripour F, Hazrati H. 2018. Ni-doped high silica HZSM-5 zeolite (Si/Al= 200) nanocatalyst for the selective production of olefins from methanol. J Anal Appl Pyrolysis. 132:1–10. doi:10.1016/j.jaap.2018.04.003
  • Ryoo R, Park I-S, Jun S, Lee CW, Kruk M, Jaroniec M. 2001. Synthesis of ordered and disordered silicas with uniform pores on the border between micropore and mesopore regions using short double-chain surfactants. J Am Chem Soc. 123(8):1650–1657. doi:10.1021/ja0038326
  • Sadeghpour P, Haghighi M. 2015. DEA/TEAOH templated synthesis and characterization of nanostructured NiAPSO-34 particles: Effect of single and mixed templates on catalyst properties and performance in the methanol to olefin reaction. Particuology. 19:69–81. doi:10.1016/j.partic.2014.04.012
  • Sadeghpour P, Haghighi M. 2018. High-temperature and short-time hydrothermal fabrication of nanostructured ZSM-5 catalyst with suitable pore geometry and strong intrinsic acidity used in methanol to light olefins conversion. Adv Powder Technol. 29(5):1175–1188. doi:10.1016/j.apt.2018.02.009
  • Sadeghpour P, Haghighi M, Khaledi K. 2018. High-temperature efficient isomorphous substitution of boron into ZSM-5 nanostructure for selective and stable production of ethylene and propylene from methanol. Mater Chem Phys. 217:133–150. doi:10.1016/j.matchemphys.2018.06.048
  • Salmasi M, Fatemi S, Taheri Najafabadi A. 2011. Improvement of light olefins selectivity and catalyst lifetime in MTO reaction; using Ni and Mg-modified SAPO-34 synthesized by combination of two templates. J Ind Eng Chem. 17(4):755–761. doi:10.1016/j.jiec.2011.05.031
  • Sang S, Chang F, Liu Z, He C, He Y, Xu L. 2004. Difference of ZSM-5 zeolites synthesized with various templates. Catal Today. 93–95:729–734. doi:10.1016/j.cattod.2004.06.091
  • Santhosh Kumar M, Chen D, Holmen A, Walmsley JC. 2009. Dehydrogenation of propane over Pt-SBA-15 and Pt-Sn-SBA-15: Effect of Sn on the dispersion of Pt and catalytic behavior. Catal Today. 142(1-2):17–23. doi:10.1016/j.cattod.2009.01.002
  • Sassi A, Wildman MA, Ahn HJ, Prasad P, Nicholas JB, Haw JF. 2002. Methylbenzene chemistry on zeolite HBeta: Multiple insights into methanol-to-olefin catalysis. J Phys Chem B. 106(9):2294–2303. doi:10.1021/jp013392k
  • Sastre G. 2016. Confinement effects in methanol to olefins catalysed by zeolites: A computational review. Front Chem Sci Eng. 10(1):76–89. doi:10.1007/s11705-016-1557-3
  • Schick J, Daou TJ, Caullet P, Paillaud J-L, Patarin J, Mangold-Callarec C. 2011. Surfactant-modified MFI nanosheets: a high capacity anion-exchanger. Chem Commun (Camb). 47(3):902–904. doi:10.1039/c0cc03604h
  • Schipper P, Krambeck F. 1986. A reactor design simulation with reversible and irreversible catalyst deactivation. Chem Eng Sci. 41(4):1013–1019. doi:10.1016/0009-2509(86)87187-1
  • Schmidt I, Boisen A, Gustavsson E, Ståhl K, Pehrson S, Dahl S, Carlsson A, Jacobsen CJH. 2001. Carbon nanotube templated growth of mesoporous zeolite single crystals. Chem Mater. 13(12):4416–4418. doi:10.1021/cm011206h
  • Schwarz S, Kojima M, O'Connor CT. 1991. Effect of tetraalkylammonium, alcohol and amine templates on the synthesis and high pressure propene oligomerisation activity of ZSM-type zeolites. Appl Catal. 73(2):313–330. doi:10.1016/0166-9834(91)85144-K
  • Sedran U, Mahay A, De Lasa HI. 1990. Modelling methanol conversion to hydrocarbons: revision and testing of a simple kinetic model. Chem Eng Sci. 45(5):1161–1165. doi:10.1016/0009-2509(90)87109-6
  • Serrano DP, Aguado J, Escola JM, Rodríguez JM, Peral Á. 2006. Hierarchical zeolites with enhanced textural and catalytic properties synthesized from organofunctionalized seeds. Chem Mater. 18(10):2462–2464. doi:10.1021/cm060080r
  • Serrano DP, Escola JM, Pizarro P. 2013. Synthesis strategies in the search for hierarchical zeolites. Chem Soc Rev. 42(9):4004–4035. doi:10.1039/c2cs35330j
  • Sheldon RA. 2011. Utilisation of biomass for sustainable fuels and chemicals: Molecules, methods and metrics. Catal Today. 167(1):3–13. doi:10.1016/j.cattod.2010.10.100
  • Shetti V, Kim J, Srivastava R, Choi M, Ryoo R. 2008. Assessment of the mesopore wall catalytic activities of MFI zeolite with mesoporous/microporous hierarchical structures. J Catal. 254(2):296–303. doi:10.1016/j.jcat.2008.01.006
  • Song W, Marcus DM, Fu H, Ehresmann JO, Haw JF. 2002. An oft-studied reaction that may never have been: Direct catalytic conversion of methanol or dimethyl ether to hydrocarbons on the solid acids HZSM-5 or HSAPO-34. J Am Chem Soc. 124(15):3844–3845. doi:10.1021/ja016499u
  • Song W, Nicholas JB, Sassi A, Haw JF. 2002. Synthesis of the heptamethylbenzenium cation in zeolite-β: In situ NMR and theory. Catal Lett. 81(1/2):49–53. doi:10.1023/A:1016003905167
  • Song W, Wei Y. 2016. Chemistry of the Methanol to Olefin Conversion. Zeolites in Sustainable Chemistry, Springer: 299–346. Green Chemistry and Sustainable Technology, Springer, Berlin, Heidelberg. doi:10.1007/978-3-662-47395-5_9
  • Standl S, Kirchberger FM, Kühlewind T, Tonigold M, Sanchez-Sanchez M, Lercher JA, Hinrichsen O. 2020. Single-event kinetic model for methanol-to-olefins (MTO) over ZSM-5: Fundamental kinetics for the olefin co-feed reactivity. Chem Engin J. 402:126023. doi:10.1016/j.cej.2020.126023
  • Stöcker M. 1999. Methanol-to-hydrocarbons: catalytic materials and their behavior. Microporous Mesoporous Mater. 29(1–2):3–48. doi:10.1016/S1387-1811(98)00319-9
  • Sullivan RF, Egan CJ, Langlois GE, Sieg RP. 1961. A new reaction that occurs in the hydrocracking of certain aromatic hydrocarbons. J Am Chem Soc. 83(5):1156–1160. doi:10.1021/ja01466a036
  • Sun C, Du J, Liu J, Yang Y, Ren N, Shen W, Xu H, Tang Y. 2010. A facile route to synthesize endurable mesopore containing ZSM-5 catalyst for methanol to propylene reaction. Chem Commun (Camb). 46(15):2671–2673. doi:10.1039/b925850g
  • Sun C, Wang Y, Chen H, Wang X, Wang C, Zhang X. 2020. Seed-assisted synthesis of hierarchical SAPO-18/34 intergrowth and SAPO-34 zeolites and their catalytic performance for the methanol-to-olefin reaction. Catal Today. 355:188–198. doi:10.1016/j.cattod.2019.04.038
  • Sun C, Wang Y, Wang Z, Chen H, Wang X, Li H, Sun L, Fan C, Wang C, Zhang X, et al. 2018. Fabrication of hierarchical ZnSAPO-34 by alkali treatment with improved catalytic performance in the methanol-to-olefin reaction. CR Chim. 21(1):61–70. doi:10.1016/j.crci.2017.11.006
  • Sun C, Wang Y, Zhao A, Wang X, Wang C, Zhang X, Wang Z, Zhao J, Zhao T. 2020. Synthesis of nano-sized SAPO-34 with morpholine-treated micrometer-seeds and their catalytic performance in methanol-to-olefin reactions. Appl Catal, A. 589:117314. doi:10.1016/j.apcata.2019.117314
  • Suttipat D, Saenluang K, Wannapakdee W, Dugkhuntod P, Ketkaew M, Pornsetmetakul P, Wattanakit C. 2021. Fine-tuning the surface acidity of hierarchical zeolite composites for methanol-to-olefins (MTO) reaction. Fuel. 286:119306. doi:10.1016/j.fuel.2020.119306
  • Svelle S, Joensen F, Nerlov J, Olsbye U, Lillerud K-P, Kolboe S, Bjørgen M. 2006. Conversion of methanol into hydrocarbons over zeolite H-ZSM-5: Ethene formation is mechanistically separated from the formation of higher alkenes. J Am Chem Soc. 128(46):14770–14771. doi:10.1021/ja065810a
  • Svelle S, Olsbye U, Joensen F, Bjørgen M. 2007. Conversion of methanol to alkenes over medium-and large-pore acidic zeolites: Steric manipulation of the reaction intermediates governs the ethene/propene product selectivity. J Phys Chem C. 111(49):17981–17984. doi:10.1021/jp077331j
  • Takahashi A, Xia W, Wu Q, Furukawa T, Nakamura I, Shimada H, Fujitani T. 2013. Difference between the mechanisms of propylene production from methanol and ethanol over ZSM-5 catalysts. Appl Catal, A. 467:380–385. doi:10.1016/j.apcata.2013.07.064
  • Tanaka S, Fukui R, Kosaka A, Nishiyama N. 2020. Development of hierarchical and phosphorous-modified HZSM-5 zeolites by sequential alkaline/acid treatments and their catalytic performances for methanol-to-olefins. Mater Res Bull. 130:110958. doi:10.1016/j.materresbull.2020.110958
  • Taniguchi T, Nakasaka Y, Yoneta K, Tago T, Masuda T. 2016. Size-controlled synthesis of metallosilicates with MTW structure and catalytic performance for methanol-to-propylene reaction. Catal Lett. 146(3):666–676. doi:10.1007/s10562-015-1683-4
  • Tanizume S, Maehara S, Ishii K, Onoki T, Okuno T, Tawarayama H, Ishikawa S, Nomura M. 2021. Reaction of methanol to olefin using a membrane contactor on a silica substrate. Sep Purif Technol. 254:117647. doi:10.1016/j.seppur.2020.117647
  • Tao Y, Kanoh H, Kaneko K. 2003. ZSM-5 monolith of uniform mesoporous channels. J Am Chem Soc. 125(20):6044–6045. doi:10.1021/ja0299405
  • Tian S, Ji S, Lü D, Bai B, Sun Q. 2013. Preparation of modified Ce-SAPO-34 catalysts and their catalytic performances of methanol to olefins. J Energy Chem. 22(4):605–609. doi:10.1016/S2095-4956(13)60079-0
  • Tian P, Wei Y, Ye M, Liu Z. 2015. Methanol to olefins (MTO): from fundamentals to commercialization. ACS Catal. 5(3):1922–1938. doi:10.1021/acscatal.5b00007
  • Tosheva L, Valtchev VP. 2005. Nanozeolites: synthesis, crystallization mechanism, and applications. Chem Mater. 17(10):2494–2513. doi:10.1021/cm047908z
  • Triantafillidis CS, Vlessidis AG, Nalbandian L, Evmiridis NP. 2001. Effect of the degree and type of the dealumination method on the structural, compositional and acidic characteristics of H-ZSM-5 zeolites. Microporous Mesoporous Mater. 47(2–3):369–388. doi:10.1016/S1387-1811(01)00399-7
  • Valecillos J, Epelde E, Albo J, Aguayo AT, Bilbao J, Castaño P. 2020. Slowing down the deactivation of H-ZSM-5 zeolite catalyst in the methanol-to-olefin (MTO) reaction by P or Zn modifications. Catal Today. 348:243–256. doi:10.1016/j.cattod.2019.07.059
  • Valero-Romero MJ, Márquez-Franco EM, Bedia J, Rodríguez-Mirasol J, Cordero T. 2014. Hierarchical porous carbons by liquid phase impregnation of zeolite templates with lignin solution. Microporous Mesoporous Mater. 196:68–78. doi:10.1016/j.micromeso.2014.04.055
  • Valle B, Alonso A, Atutxa A, Gayubo AG, Bilbao J. 2005. Effect of nickel incorporation on the acidity and stability of HZSM-5 zeolite in the MTO process. Catal Today. 106(1–4):118–122. doi:10.1016/j.cattod.2005.07.132
  • Védrine JC, Auroux A, et al. 1982. Catalytic and physical properties of phosphorus-modified ZSM-5 zeolite. J Catal. 73(1):147–160.
  • Verma D, Kumar R, Rana BS, Sinha AK. 2011. Aviation fuel production from lipids by a single-step route using hierarchical mesoporous zeolites. Energy Environ Sci. 4(5):1667–1671. doi:10.1039/c0ee00744g
  • Vinek H, Rumplmayr G, et al. 1989. Catalytic properties of postsynthesis phosphorus-modified H-ZSM5 zeolites. J Catal. 115(2):291–300. doi:10.1016/0021-9517(89)90033-X
  • Voltz SE, Wise J. 1976. Development studies on conversion of methanol and related oxygenates to gasoline.: Report, Energy Research and Development Administration. Quarterly Progress Report, May - Jul. 1976 Mobil Research and Development Corp., Paulsboro, NJ.
  • Wang S, Chen Y, Qin Z, Zhao T-S, Fan S, Dong M, Li J, Fan W, Wang J. 2019. Origin and evolution of the initial hydrocarbon pool intermediates in the transition period for the conversion of methanol to olefins over H-ZSM-5 zeolite. J Catal. 369:382–395. doi:10.1016/j.jcat.2018.11.018
  • Wang S, Chen Y, Wei Z, Qin Z, Ma H, Dong M, Li J, Fan W, Wang J. 2015. Polymethylbenzene or alkene cycle? theoretical study on their contribution to the process of methanol to olefins over H-ZSM-5 zeolite. J Phys Chem C. 119(51):28482–28498. doi:10.1021/acs.jpcc.5b10299
  • Wang C, Chu Y, Zheng A, Xu J, Wang Q, Gao P, Qi G, Gong Y, Deng F. 2014. New Insight into the hydrocarbon-pool chemistry of the methanol-to-olefins conversion over zeolite H-ZSM-5 from GC-MS, solid-state NMR spectroscopy, and DFT calculations. Chemistry. 20(39):12432–12443. doi:10.1002/chem.201403972
  • Wang S, Li Z, Qin Z, Dong M, Li J, Fan W, Wang J. 2021. Catalytic roles of the acid sites in different pore channels of H-ZSM-5 zeolite for methanol-to-olefins conversion. Chin J Catal. 42(7):1126–1136. doi:10.1016/S1872-2067(20)63732-9
  • Wang H, Pinnavaia TJ. 2006. MFI zeolite with small and uniform intracrystal mesopores. Angew Chem Int Ed Engl. 45(45):7603–7606. doi:10.1002/anie.200602595
  • Wang C-M, Wang Y-D, Du Y-J, Yang G, Xie Z-K. 2016. Computational insights into the reaction mechanism of methanol-to-olefins conversion in H-ZSM-5: nature of hydrocarbon pool. Catal Sci Technol. 6(9):3279–3288. doi:10.1039/C5CY01419K
  • Wang S, Wang P, Qin Z, Chen Y, Dong M, Li J, Zhang K, Liu P, Wang J, Fan W, et al. 2018. Relation of catalytic performance to the aluminum siting of acidic zeolites in the conversion of methanol to olefins, viewed via a comparison between ZSM-5 and ZSM-11. ACS Catal. 8(6):5485–5505. doi:10.1021/acscatal.8b01054
  • Wang C-M, Wang Y-D, Xie Z-K. 2018. Elucidating the dominant reaction mechanism of methanol-to-olefins conversion in H-SAPO-18: A first-principles study. Chin J Catal. 39(7):1272–1279. doi:10.1016/S1872-2067(18)63064-5
  • Wang Q, Xu S, Chen J, Wei Y, Li J, Fan D, Yu Z, Qi Y, He Y, Xu S, et al. 2014. Synthesis of mesoporous ZSM-5 catalysts using different mesogenous templates and their application in methanol conversion for enhanced catalyst lifespan. RSC Adv. 4(41):21479–21491. doi:10.1039/C4RA02695K
  • Wang L, Zhang Z, Yin C, Shan Z, Xiao F-S. 2010. Hierarchical mesoporous zeolites with controllable mesoporosity templated from cationic polymers. Microporous Mesoporous Mater. 131(1–3):58–67. doi:10.1016/j.micromeso.2009.12.001
  • Wei R, Li C, Yang C, Shan H. 2011. Effects of ammonium exchange and Si/Al ratio on the conversion of methanol to propylene over a novel and large partical size ZSM-5. J Nat Gas Chem. 20(3):261–265. doi:10.1016/S1003-9953(10)60198-3
  • Wen M, Ding J, Wang C, Li Y, Zhao G, Liu Y, Lu Y. 2016. High-performance SS-fiber@ HZSM-5 core–shell catalyst for methanol-to-propylene: A kinetic and modeling study. Microporous Mesoporous Mater. 221:187–196. doi:10.1016/j.micromeso.2015.09.039
  • Wen M, Wang X, Han L, Ding J, Sun Y, Liu Y, Lu Y. 2015. Monolithic metal-fiber@ HZSM-5 core–shell catalysts for methanol-to-propylene. Microporous Mesoporous Mater. 206:8–16. doi:10.1016/j.micromeso.2014.12.007
  • White RJ, Fischer A, Goebel C, Thomas A. 2014. A sustainable template for mesoporous zeolite synthesis. J Am Chem Soc. 136(7):2715–2718. doi:10.1021/ja411586h
  • Wijnen PWJG, Beelen TPM, de Haan JW, Rummens CPJ, van de Ven LJM, van Santen RA. 1989. Silica gel dissolution in aqueous alkali metal hydroxides studied by 29Si— NMR. J Non-Cryst Solids. 109(1):85–94. doi:10.1016/0022-3093(89)90446-8
  • Wilhelm DJ, Simbeck DR, Karp AD, Dickenson RL. 2001. Syngas production for gas-to-liquids applications: technologies, issues and outlook. Fuel Process Technol. 71(1–3):139–148. doi:10.1016/S0378-3820(01)00140-0
  • Wu W, Guo W, Xiao W, Luo M. 2011. Dominant reaction pathway for methanol conversion to propene over high silicon H-ZSM-5. Chem Eng Sci. 66(20):4722–4732. doi:10.1016/j.ces.2011.06.036
  • Wu X, Xu S, Zhang W, Huang J, Li J, Yu B, Wei Y, Liu Z. 2017. Direct mechanism of the first carbon–carbon bond formation in the methanol‐to‐hydrocarbons process. Angew Chem. 129(31):9167–9171. doi:10.1002/ange.201703902
  • Xing A, Yuan D, Tian D, Sun Q. 2019. Controlling acidity and external surface morphology of SAPO-34 and its improved performance for methanol to olefins reaction. Microporous Mesoporous Mater. 288:109562. doi:10.1016/j.micromeso.2019.109562
  • Xu T, Barich DH, Goguen PW, Song W, Wang Z, Nicholas JB, Haw JF. 1998. Synthesis of a benzenium ion in a zeolite with use of a catalytic flow reactor. J Am Chem Soc. 120(16):4025–4026. doi:10.1021/ja973791m
  • Xue Y, Li J, Wang S, Cui X, Dong M, Wang G, Qin Z, Wang J, Fan W. 2018. Co-reaction of methanol with butene over a high-silica H-ZSM-5 catalyst. J Catal. 367:315–325. doi:10.1016/j.jcat.2018.09.008
  • Xue Y, Li J, Wang P, Cui X, Zheng H, Niu Y, Dong M, Qin Z, Wang J, Fan W, et al. 2021. Regulating Al distribution of ZSM-5 by Sn incorporation for improving catalytic properties in methanol to olefins. Appl Catal, B. 280:119391. doi:10.1016/j.apcatb.2020.119391
  • Xu A, Ma H, Zhang H, Weiyong D, Fang D. 2013. Effect of boron on ZSM-5 catalyst for methanol to propylene conversion. Polish J Chem Technol. 15(4):95–101. doi:10.2478/pjct-2013-0075
  • Xu S, Zheng A, Wei Y, Chen J, Li J, Chu Y, Zhang M, Wang Q, Zhou Y, Wang J, et al. 2013. Direct observation of cyclic carbenium ions and their role in the catalytic cycle of the methanol-to-olefin reaction over chabazite zeolites. Angew Chem Int Ed Engl. 52(44):11564–11568. doi:10.1002/anie.201303586
  • Yalcin BK, Ipek B. 2020. Fluoride-free synthesis of mesoporous [Al]-[B]-ZSM-5 using cetyltrimethylammonium bromide and methanol-to-olefin activity with high propene selectivity. Appl Catal, A: 610:117915.
  • Yang G, Han J, Huang Y, Chen X, Valtchev V. 2020. Busting the efficiency of SAPO-34 catalysts for the MTO conversion by post-synthesis methods. Chin J Chem Eng. 28(8):2022–2027. doi:10.1016/j.cjche.2020.05.028
  • Yang Y, Sun C, Du J, Yue Y, Hua W, Zhang C, Shen W, Xu H. 2012. The synthesis of endurable B–Al–ZSM-5 catalysts with tunable acidity for methanol to propylene reaction. Catal Commun. 24:44–47. doi:10.1016/j.catcom.2012.03.013
  • Yaripour F, Shariatinia Z, Sahebdelfar S, Irandoukht A. 2015. Conventional hydrothermal synthesis of nanostructured H-ZSM-5 catalysts using various templates for light olefins production from methanol. J Nat Gas Sci Eng. 22:260–269. doi:10.1016/j.jngse.2014.12.001
  • Yarulina I, Chowdhury AD, Meirer F, Weckhuysen BM, Gascon J. 2018. Recent trends and fundamental insights in the methanol-to-hydrocarbons process. Nat Catal. 1(6):398–411. doi:10.1038/s41929-018-0078-5
  • Yarulina I, De Wispelaere K, Bailleul S, Goetze J, Radersma M, Abou-Hamad E, Vollmer I, Goesten M, Mezari B, Hensen EJM, et al. 2018. Structure-performance descriptors and the role of Lewis acidity in the methanol-to-propylene process. Nat Chem. 10(8):804–812. doi:10.1038/s41557-018-0081-0
  • Yu Q, Meng X, Liu J, Li C, Cui Q. 2013. A fast organic template-free, ZSM-11 seed-assisted synthesis of ZSM-5 with good performance in methanol-to-olefin. Microporous Mesoporous Mater. 181:192–200. doi:10.1016/j.micromeso.2013.07.034
  • Zang K, Zhang W, Huang J, Feng P, Ding J. 2019. First molecule with carbon–carbon bond in methanol-to-olefins process. Chem Phys Lett. 737:136844. doi:10.1016/j.cplett.2019.136844
  • Zhang W, Chen J, Xu S, Chu Y, Wei Y, Zhi Y, Huang J, Zheng A, Wu X, Meng X, et al. 2018. Methanol to olefins reaction over cavity-type zeolite: cavity controls the critical intermediates and product selectivity. ACS Catal. 8(12):10950–10963. doi:10.1021/acscatal.8b02164
  • Zhang C, Chen H, Zhang X, Wang Q. 2017. TPABr-grafted MWCNT as bifunctional template to synthesize hierarchical ZSM-5 zeolite. Mater Lett. 197:111–114. doi:10.1016/j.matlet.2017.03.085
  • Zhang S, Gong Y, Zhang L, Liu Y, Dou T, Xu J, Deng F. 2015. Hydrothermal treatment on ZSM-5 extrudates catalyst for methanol to propylene reaction: finely tuning the acidic property. Fuel Process Technol. 129:130–138. doi:10.1016/j.fuproc.2014.09.006
  • Zhang Y, Li M, Xing E, Luo Y, Shu X. 2019. Coke evolution on mesoporous ZSM-5 during methanol to propylene reaction. Catal Commun. 119:67–70. doi:10.1016/j.catcom.2018.10.009
  • Zhang H, Ning Z, Shang J, Liu HYan, Han SHua, Qu W, Jiang Y, Guo Y. 2017. A durable and highly selective PbO/HZSM-5 catalyst for methanol to propylene (MTP) conversion. Microporous Mesoporous Mater. 248:173–178. doi:10.1016/j.micromeso.2017.04.031
  • Zhang K, Ostraat ML. 2016. Innovations in hierarchical zeolite synthesis. Catal Today. 264:3–15. doi:10.1016/j.cattod.2015.08.012
  • Zhang C, Wang F, et al. 2020. Numerical exploration of hydrodynamic features in a methanol-to-olefins fluidized bed reactor with two parallel reaction zones. Powder Technol. 372:336–350.
  • Zhang L, Wang S, Shi D, Qin Z, Wang P, Wang G, Li J, Dong M, Fan W, Wang J, et al. 2020. Methanol to olefins over H-RUB-13 zeolite: regulation of framework aluminum siting and acid density and their relationship to the catalytic performance. Catal Sci Technol. 10(6):1835–1847. doi:10.1039/C9CY02419K
  • Zhang M, Xu S, Li J, Wei Y, Gong Y, Chu Y, Zheng A, Wang J, Zhang W, Wu X, et al. 2016. Methanol to hydrocarbons reaction over Hβ zeolites studied by high resolution solid-state NMR spectroscopy: Carbenium ions formation and reaction mechanism. J Catal. 335:47–57. doi:10.1016/j.jcat.2015.12.007
  • Zhang M, Xu S, Wei Y, Li J, Wang J, Zhang W, Gao S, Liu Z. 2016. Changing the balance of the MTO reaction dual-cycle mechanism: Reactions over ZSM-5 with varying contact times. Chin J Catal. 37(8):1413–1422. doi:10.1016/S1872-2067(16)62466-X
  • Zhang S, Zhang B, et al. 2010. Ca modified ZSM-5 for high propylene selectivity from methanol. Reaction Kinetics, Mech Catal. 99(2):447–453.
  • Zhang W, Zhi Y, Huang J, Wu X, Zeng S, Xu S, Zheng A, Wei Y, Liu Z. 2019. Methanol to olefins reaction route based on methylcyclopentadienes as critical intermediates. ACS Catal. 9(8):7373–7379. doi:10.1021/acscatal.9b02487
  • Zhao X, Hong Y, Wang L, Fan D, Yan N, Liu X, Tian P, Guo X, Liu Z. 2018. External surface modification of as-made ZSM-5 and their catalytic performance in the methanol to propylene reaction. Chin J Catal. 39(8):1418–1426. doi:10.1016/S1872-2067(18)63117-1
  • Zhao T-S, Takemoto T, Tsubaki N. 2006. Direct synthesis of propylene and light olefins from dimethyl ether catalyzed by modified H-ZSM-5. Catal Commun. 7(9):647–650. doi:10.1016/j.catcom.2005.11.009
  • Zhong J, Han J, Wei Y, Liu Z. 2021. Catalysts and shape selective catalysis in the methanol-to-olefin (MTO) reaction. J Catal. 396:23–31. doi:10.1016/j.jcat.2021.01.027
  • Zhong J, Han J, Wei Y, Tian P, Guo X, Song C, Liu Z. 2017. Recent advances of the nano-hierarchical SAPO-34 in the methanol-to-olefin (MTO) reaction and other applications. Catal Sci Technol. 7(21):4905–4923. doi:10.1039/C7CY01466J
  • Zhong J, Han J, Wei Y, Xu S, He Y, Zheng Y, Ye M, Guo X, Song C, Liu Z, et al. 2018. Increasing the selectivity to ethylene in the MTO reaction by enhancing diffusion limitation in the shell layer of SAPO-34 catalyst. Chem Commun (Camb). 54(25):3146–3149. doi:10.1039/C7CC09239C
  • Zhou J, Gao M, et al. 2021. Directed transforming of coke to active intermediates in methanol-to-olefins catalyst to boost light olefins selectivity. Nat Commun. 12(1):1–11.
  • Zhou J, Zhi Y, Zhang J, Liu Z, Zhang T, He Y, Zheng A, Ye M, Wei Y, Liu Z, et al. 2019. Presituated “coke”-determined mechanistic route for ethene formation in the methanol-to-olefins process on SAPO-34 catalyst. J Catal. 377:153–162. doi:10.1016/j.jcat.2019.06.014
  • Zhuang S, Hu Z, Huang L, Qin F, Huang Z, Sun C, Shen W, Xu H. 2018. Synthesis of ZSM-5 catalysts with tunable mesoporosity by ultrasound-assisted method: A highly stable catalyst for methanol to propylene. Catal Commun. 114:28–32. doi:10.1016/j.catcom.2018.06.001
  • Zhu K, Egeblad K, Christensen CH. 2007. Mesoporous carbon prepared from carbohydrate as hard template for hierarchical zeolites. Eur J Inorg Chem. 2007(25):3955–3960. doi:10.1002/ejic.200700218
  • Zhu X, Goesten MG, Koekkoek AJJ, Mezari B, Kosinov N, Filonenko G, Friedrich H, Rohling R, Szyja BM, Gascon J, et al. 2016. Establishing hierarchy: the chain of events leading to the formation of silicalite-1 nanosheets. Chem Sci. 7(10):6506–6513. doi:10.1039/C6SC01295G
  • Zhu Y, Hua Z, Zhou J, Wang L, Zhao J, Gong Y, Wu W, Ruan M, Shi J. 2011. Hierarchical mesoporous zeolites: Direct self‐assembly synthesis in a conventional surfactant solution by kinetic control over the zeolite seed formation. Chem Eur J. 17(51):14618–14627. doi:10.1002/chem.201101401
  • Zhu Q, Kondo JN, Setoyama T, Yamaguchi M, Domen K, Tatsumi T. 2008. Activation of hydrocarbons on acidic zeolites: superior selectivity of methylation of ethene with methanol to propene on weakly acidic catalysts. Chem Commun. 1(41):5164–5166. doi:10.1039/b809718f
  • Zhu Q, Kondo JN, Tatsumi T. 2018. Co-reaction of methanol and ethylene over MFI and CHA zeolitic catalysts. Microporous Mesoporous Mater. 255:174–184. doi:10.1016/j.micromeso.2017.07.030

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.