220
Views
1
CrossRef citations to date
0
Altmetric
Articles

Synthesis and physico-chemistry properties of a diesel-like fuel produced from waste polypropylene pyrolysis oil

, , , &

References

  • Abnisa F, Wan Daud WMA, Sahu JN. 2014. Pyrolysis of mixtures of palm shell and polystyrene: an optional method to produce a high-grade of pyrolysis oil. Environ Prog Sustain Energy. 33(3):1026–1033. doi:10.1002/ep.11850
  • Aboulkas A, El Harfi K, El Bouadili A. 2010. Thermal degradation behaviors of polyethylene and polypropylene. Part I: Pyrolysis kinetics and mechanisms. Energy Convers Manag. 51(7):1363–1369. doi:10.1016/j.enconman.2009.12.017
  • Achilias DS, Roupakias C, Megalokonomos P, Lappas AA, Antonakou EV. 2007. Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP). J Hazard Mater. 149(3):536–542. doi:10.1016/j.jhazmat.2007.06.076
  • Adrados A, Marco I, Caballero BM, López A, Laresgoiti MF, Torres A. 2012. Pyrolysis of plastic packaging waste: A comparison of plastic residuals from material recovery facilities with simulated plastic waste. Waste Manag. 32(5):826–832. doi:10.1016/j.wasman.2011.06.016
  • Ağbulut Ü, Yeşilyurt MK, Sarıdemir S. 2021. Wastes to energy: Improving the poor properties of waste tire pyrolysis oil with waste cooking oil methyl ester and waste fusel alcohol – A detailed assessment on the combustion, emission, and performance characteristics of a CI engine. Energy. 222:119942. doi:10.1016/j.energy.2021.119942
  • Ahmad I, Khan MI, Khan H, Ishaq M, Tariq R, Gul K, Ahmad W. 2015. Pyrolysis study of polypropylene and polyethylene into premium oil products. Int J Green Energy. 12(7):663–671. doi:10.1080/15435075.2014.880146
  • Ahmad I, Khan MI, Khan H, Ishaq M, Khan R, Gul K, Ahmad W. 2017. Influence of waste brick kiln dust on pyrolytic conversion of polypropylene in to potential automotive fuels. J Anal Appl Pyrolysis. 126:247–256. doi:10.1016/j.jaap.2017.06.002
  • Arabiourrutia M, Elordi G, Lopez G, Borsella E, Bilbao J, Olazar M. 2012. Characterization of the waxes obtained by the pyrolysis of polyolefin plastics in a conical spouted bed reactor. J Anal Appl Pyrolysis. 94:230–237. doi:10.1016/j.jaap.2011.12.012
  • ASTM D 1480-02. 2007. Standard test method for density and relative density (specific gravity) of viscous materials by Bingham pycnometer. American Society for Testing and Materials. West Conshohocken: ASTM International.
  • ASTM D 240-02. 2002. Standard test method for heat of combustion of liquid hydrocarbon fuels by bomb calorimeter. American Society for Testing and Materials. West Conshohocken: ASTM International.
  • ASTM D 445-65 1965. Standard test method for kinematic viscosity of transparent and opaque liquids (kinematic and dynamic viscosities). American Society for Testing and Materials. West Conshohocken: ASTM International.
  • Azizi K, Moraveji MK, Najafabadi HA. 2017. Characteristics and kinetics study of simultaneous pyrolysis of microalgae Chlorella vulgaris, wood and polypropylene through TGA. Bioresour Technol. 243:481–491. doi:10.1016/j.biortech.2017.06.155
  • Balaji AB, Ratnam CT, Khalid M, Walvekar R. 2017. Effect of electron beam irradiation on thermal and crystallization behavior of PP/EPDM blend. Radiat Phys Chem. 141:179–189. doi:10.1016/j.radphyschem.2017.07.001
  • Benavides PT, Sun P, Han J, Dunn JB, Wang M. 2017. Life-cycle analysis of fuels from post-use non-recycled plastics. Fuel. 203:11–22. doi:10.1016/j.fuel.2017.04.070
  • Bodzay B, Marosfoi BB, Igricz T, Bocz K, Marosi G. 2009. Polymer degradation studies using laser pyrolysis-FTIR microanalysis. J Anal Appl Pyrolysis. 85(1-2):313–320. doi:10.1016/j.jaap.2008.11.016
  • Costa P, Pinto F, Ramos AM, Gulyurtlu I, Cabrita I, Bernardo MS. 2010. Study of the pyrolysis kinetics of a mixture of polyethylene, polypropylene, and polystyrene. Energy Fuels. 24(12):6239–6247. doi:10.1021/ef101010n
  • Ejim CE, Fleck BA, Amirfazli A. 2007. Analytical study for atomization of biodiesels and their blends in a typical injector: Surface tension and viscosity effects. Fuel. 86(10-11):1534–1544. doi:10.1016/j.fuel.2006.11.006
  • EN 14103:2011. 2011. Fat and oil derivatives − Fatty Acid Methyl Esters (FAME) determination of ester and linolenic acid methyl esters content.
  • Eriksen MK, Christiansen J, Daugaard AE, Astrup TF. 2019. Closing the loop for PET, PE and PP waste from households: Influence of material properties and product design for plastic recycling. Waste Manag. 96:75–85. doi:10.1016/j.wasman.2019.07.005
  • Escola JM, Aguado J, Serrano DP, Briones L, Díaz de Tuesta JL, Calvo R, Fernandez E. 2012. Conversion of polyethylene into transportation fuels by the combination of thermal cracking and catalytic hydroreforming over Ni-supported hierarchical beta zeolite. Energy Fuels. 26(6):3187–3195. doi:10.1021/ef300938r
  • Escola JM, Serrano DP, Aguado J, Briones L. 2015. Hydroreforming of the LDPE thermal cracking oil over hierarchical Ni/Beta catalysts with different Ni particle size distributions. Ind Eng Chem Res. 54(26):6660–6668. doi:10.1021/acs.iecr.5b01160
  • Hariharan S, Murugan S, Nagarajan G. 2013. Effect of diethyl ether on Tyre pyrolysis oil fueled diesel engine. Fuel. 104:109–115. doi:10.1016/j.fuel.2012.08.041
  • Heydariaraghi M, Ghorbanian S, Hallajisani A, Salehpour A. 2016. Fuel properties of the oils produced from the pyrolysis of commonly-used polymers: Effect of fractionating column. J Anal Appl Pyrolysis. 121:307–317. doi:10.1016/j.jaap.2016.08.010
  • Joppert N, Jr Silva AA, Marques MRC. 2015. Enhanced diesel fuel fraction from waste high-density polyethylene and heavy gas oil pyrolysis using factorial design methodology. Waste Manag. 36:166–176. doi:10.1016/j.wasman.2014.11.023
  • Jung CG, Fontana A. 2010. Production of gaseous and liquid fuels by pyrolysis and gasification of plastics: Technological approach. In: Scheirs J, Kaminsky W, editors. Feedstock recycling and pyrolysis of waste plastics: converting waste plastics into diesel and other fuels. Edithvale: John Wiley & Sons. p. 249–283.
  • Kalargaris I, Tian G, Gu S. 2017. Combustion, performance and emission analysis of a DI diesel engine using plastic pyrolysis oil. Fuel Process Technol. 157:108–115. doi:10.1016/j.fuproc.2016.11.016
  • Karagöz M, Ağbulut Ü, Sarıdemir S. 2020. Waste to energy: Production of waste tire pyrolysis oil and comprehensive analysis of its usability in diesel engines. Fuel. 275:117844. doi:10.1016/j.fuel.2020.117844
  • Karagöz M, Uysal C, Agbulut U, Saridemir S. 2020. Energy, exergy, economic and sustainability assessments of a compression ignition diesel engine fueled with tire pyrolytic oil-diesel blends. J Clean Prod. 264:121724. doi:10.1016/j.jclepro.2020.121724
  • Kassargy C, Awad S, Burnens G, Kahine K, Tazerout M. 2018. Gasoline and diesel-like fuel production by continuous catalytic pyrolysis of waste polyethylene and polypropylene mixtures over USY zeolite. Fuel. 224:764–773. doi:10.1016/j.fuel.2018.03.113
  • Kim B-H, Yoon K, Moon DC. 2012. Thermal degradation behavior of rigid and soft polyurethanes based on methylene diphenyl diisocyanate using evolved gas analysis- (gas chromatography) – mass spectrometry. J Anal Appl Pyrolysis. 98:236–241. doi:10.1016/j.jaap.2012.09.010
  • Kumagai S, Shimizu Y, Toida Y, Enda Y. 2009. Removal of dibenzothiophenes in kerosene by adsorption on rice husk activated carbon. Fuel. 88(10):1975–1982. doi:10.1016/j.fuel.2009.03.016
  • Kumar S, Singh RK. 2011. Recovery of hydrocarbon liquid from waste high density polyethylene by thermal pyrolysis. Braz J Chem Eng. 28(4):659–667. doi:10.1590/S0104-66322011000400011
  • Lamichhane S, Bal Krishna KC, Sarukkalige R. 2016. Polycyclic aromatic hydrocarbons (PAHs) removal by sorption: A review. Chemosphere. 148:336–353. doi:10.1016/j.chemosphere.2016.01.036
  • Lourenço JB, Pasa TS, Bertuol DA, Salau NPG. 2020. An approach to assess and identify polymers in the health-care waste of a Brazilian university hospital. J Environ Sci Health A Tox Hazard Subst Environ Eng. 55(7):800–819. doi:10.1080/10934529.2020.1744405
  • Ma C, Sun L, Jin L, Zhou C, Xiang J, Hu S, Su S. 2015. Effect of polypropylene on the pyrolysis of flame retarded high impact polystyrene. Fuel Process Technol. 135:150–156. doi:10.1016/j.fuproc.2014.12.011
  • Mailler R, Gasperi J, Coquet Y, Derome C, Buleté E, Vulliet A, Bressy A, Varrault G, Chebbo G, Rocher V. 2016. Removal of emerging micropollutants from wastewater by activated carbon adsorption: experimental study of different activated carbons and factors influencing the adsorption of micropollutants in wastewater. J Environ Chem Eng. 4(1):1102–1109. doi:10.1016/j.jece.2016.01.018
  • Mangesh VL, Padmanabhan S, Tamizhdurai P, Narayanan S, Ramesh A. 2020a. Experimental investigation to identify the type of waste plastic pyrolysis oil suitable for conversion to diesel engine fuel. J Clean Prod. 246:119066. doi:10.1016/j.jclepro.2019.119066
  • Mangesh VL, Padmanabhan S, Tamizhdurai P, Narayanan S, Ramesh A. 2020b. Combustion and emission analysis of hydrogenated waste polypropylene pyrolysis oil blended with diesel. J Hazard Mater. 386:121453. doi:10.1016/j.jhazmat.2019.121453
  • Mangesh VL, Perumal T, Subramanian S, Padmanabhan S. 2020. Clean energy from plastic: production of hydroprocessed waste polypropylene pyrolysis oil utilizing a Ni − Mo/Laponite catalyst. Energy Fuels. 34(7):8824–8836. doi:10.1021/acs.energyfuels.0c01051
  • Mangesh VL, Tamizhdurai P, Krishnan PS, Narayanan S, Umasankar S, Padmanabhan S, Shanthi K. 2020. Green energy: Hydroprocessing waste polypropylene to produce transport fuel. J Clean Prod. 276:124200. doi:10.1016/j.jclepro.2020.124200
  • Mani M, Nagarajan G. 2009. Influence of injection timing on performance, emission and combustion characteristics of a DI diesel engine running on waste plastic oil. Energy. 34(10):1617–1623. doi:10.1016/j.energy.2009.07.010
  • Mastral JF, Berrueco C, Ceamanos J. 2007. Theoretical prediction of product distribution of the pyrolysis of high density polyethylene. J Anal Appl Pyrolysis. 80(2):427–438. doi:10.1016/j.jaap.2006.07.009
  • Metecan IH, Ozkan AR, Isler R, Yanik J, Saglam M, Yuksel M. 2005. Naphtha derived from polyolefins. Fuel. 84(5):619–628. doi:10.1016/j.fuel.2004.10.006
  • Miandad R, Barakat MA, Aburiazaiza AS, Rehan M, Ismail IMI, Nizami AS. 2017. Effect of plastic waste types on pyrolysis liquid oil. Int Biodeterior Biodegradation. 119:239–252. doi:10.1016/j.ibiod.2016.09.017
  • Murugan S, Ramaswamy MC, Nagarajan G. 2009. Assessment of pyrolysis oil as an energy source for diesel engines. Fuel Process Technol. 90(1):67–74. doi:10.1016/j.fuproc.2008.07.017
  • Nileshkumar KD, Jani RJ, Patel TM, Rathod GP. 2015. Effect of blend ratio of plastic pyrolysis oil and diesel fuel on the performance of single cylinder CI engine. Int J Sci Technol Eng. 1(11):195–203.
  • Panda AK, Singh RK, Mishra DK. 2010. Thermolysis of waste plastics to liquid fuel: A suitable method for plastic waste management and manufacture of value added products—A world prospective. Renew Sustain Energy Rev. 14(1):233–248. doi:10.1016/j.rser.2009.07.005
  • Papagiannakis RG, Krishnan SR, Rakopoulos DC, Srinivasan KK, Rakopoulos CD. 2017. A combined experimental and theoretical study of diesel fuel injection timing and gaseous fuel/diesel mass ratio effects on the performance and emissions of natural gas-diesel HDDI engine operating at various loads. Fuel. 202:675–687. doi:10.1016/j.fuel.2017.05.012
  • Popa N, Visa M. 2017. The synthesis, activation and characterization of charcoal powder for the removal of methylene blue and cadmium from wastewater. Adv Powder Technol. 28(8):1866–1876. doi:10.1016/j.apt.2017.04.014
  • Popescu GL, Filip N, Popescu V, Molea A. 2015. A comparison between the consumption of polyethylene pyrolysis oils and diesel to supply a generator powered by a single cylinder diesel engine. Int J Appl Sci. 2(8):7–10.
  • Posch DW. 2017. Polyolefins. In: Kutz M, editor. Applied Plastics Engineering Handbook: Processing, Materials, and Applications. 2nd ed. Amsterdam: Elsevier; p. 27–53.
  • Sarker M, Rashid MM. 2013. Mixture of LDPE, PP and PS waste plastics into fuel by thermolysis process. Int J Eng Technol Res. 1(1):1–16.
  • Schawe JEK. 2016. Thermal characterization of the as-received polymer sample using fast scanning calorimetry. Thermochim Acta. 635:34–38. doi:10.1016/j.tca.2016.04.021
  • Shah SS, Ahmad I, Ahmad W, Ishaq M, Gul K, Khan R, Khan H. 2018. Study on adsorptive capability of acid activated charcoal for desulphurization of model and commercial fuel oil samples. J Environ Chem Eng. 6(4):4037–4043. doi:10.1016/j.jece.2018.06.008
  • Sharuddin SDA, Abnisa F, Daud WMAW, Aroua MK. 2017. Energy recovery from pyrolysis of plastic waste: Study on non-recycled plastics (NRP) data as the real measure of plastic waste. Energy Convers Manag. 148:925–934. doi:10.1016/j.enconman.2017.06.046
  • Sharuddin SDA, Abnisa F, Daud WMAW, Aroua MK. 2016. A review on pyrolysis of plastic wastes. Energy Convers Manag. 115:308–326. doi:10.1016/j.enconman.2016.02.037
  • Silverstein RM, Webster FX, Kiemle DJ. 2005. Spectrometric identification of organic compounds. 7th ed. New York: John Wiley & Sons.
  • Sugumaran V, Prakash S, Arora AK, Kapur GS, Narula AK. 2017. Thermal cracking of potato-peel powder-polypropylene biocomposite and characterization of products—Pyrolysed oils and bio-char. J Anal Appl Pyrolysis. 126:405–414. doi:10.1016/j.jaap.2017.04.014
  • Tesfa B, Gu F, Mishra R, Ball AD. 2013. LHV predication models and LHV effect on the performance of CI engine running with biodiesel blends. Energy Convers Manag. 71:217–226. doi:10.1016/j.enconman.2013.04.005
  • Umeki ER, Oliveira CF, Torres RB, Santos RG. 2016. Physico-chemistry properties of fuel blends composed of diesel and tire pyrolysis oil. Fuel. 185:236–242. doi:10.1016/j.fuel.2016.07.092
  • Wohlfarth C. 2014. CRC handbook of thermodynamic data of polymer solutions at elevated pressures. Florida: CRC Press Taylor & Francis Group; p. 280–288.
  • Wongkhorsub C, Chindaprasert N. 2013. A comparison of the use of pyrolysis oils in diesel engine. EPE. 05(04):350–355. doi:10.4236/epe.2013.54B068
  • Wu X, Wu Y, Wu K, Chen Y, Hu H, Yang M. 2015. Study on pyrolytic kinetics and behavior: the co-pyrolysis of microalgae and polypropylene. Bioresour Technol. 192:522–528. doi:10.1016/j.biortech.2015.06.029

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.