181
Views
2
CrossRef citations to date
0
Altmetric
Articles

Adsorption of organic acids from offshore produced water using microporous activated carbon from babassu pericarp: a low-cost alternative

, , , , , & show all

References

  • Abdalrhman AS, Zhang Y, Gamal El-Din M. 2019. Electro-oxidation by graphite anode for naphthenic acids degradation, biodegradability enhancement and toxicity reduction. Sci Total Environ. 671:270–279. doi:10.1016/j.scitotenv.2019.03.262
  • Al-Ghouti MA, Al-Kaabi MA, Ashfaq MY, Da’na DA. 2019. Produced water characteristics, treatment and reuse: a review. J. Water Process Eng. 28:222–239. doi:10.1016/j.jwpe.2019.02.001
  • Alpatova A, Kim ES, Dong S, Sun N, Chelme-Ayala P, Gamal El-Din M. 2014. Treatment of oil sands process-affected water with ceramic ultrafiltration membrane: effects of operating conditions on membrane performance. Sep Purif Technol. 122:170–182. doi:10.1016/j.seppur.2013.11.005
  • Alves Lopes I, Coelho Paixão L, Souza da Silva LJ, Almeida Rocha A, Allan AK, Amorim Santana A. 2020. Elaboration and characterization of biopolymer films with alginate and babassu coconut mesocarp. Carbohydr Polym. 234:115747. doi:10.1016/j.carbpol.2019.115747
  • Arshad M, Khosa MA, Siddique T, Ullah A. 2016. Modified biopolymers as sorbents for the removal of naphthenic acids from oil sands process affected water (OSPW). Chemosphere. 163:334–341. doi:10.1016/j.chemosphere.2016.08.015
  • Azad FS, Abedi J, Iranmanesh S. 2013. Removal of naphthenic acids using adsorption process and the effect of the addition of salt. J Environ Sci Health A Tox Hazard Subst Environ Eng. 48(13):1649–1654. doi:10.1080/10934529.2013.815457
  • Azizian S. 2004. Kinetic models of sorption: a theoretical analysis. J Colloid Interface Sci. 276(1):47–52. doi:10.1016/j.jcis.2004.03.048.
  • Barrett EP, Joyner LG, Halenda PP. 1951. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc. 73(1):373–380. doi:10.1021/ja01145a126
  • Benally C, Messele SA, Gamal El-Din M. 2019. Adsorption of organic matter in oil sands process water (OSPW) by carbon xerogel. Water Res. 154:402–411. doi:10.1016/j.watres.2019.01.053
  • Bhuiyan TI, Tak JK, Sessarego S, Harfield D, Hill JM. 2017. Adsorption of acid-extractable organics from oil sands process-affected water onto biomass-based biochar: metal content matters. Chemosphere. 168:1337–1344. doi:10.1016/j.chemosphere.2016.11.126
  • Boehm HP. 1994. Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon N Y. 32(5):759–769. doi:10.1016/0008-6223(94)90031-0
  • Boer JH, Linsen BG, van der Plas T, Zondervan GJ. 1965. Studies on pore systems in catalysts. VII. Description of the pore dimensions of carbon blacks by the t method. J Catal. 4:649–653. 10.1016/0021-9517(65)90264-2.
  • Brito GM, Roldi LL, Schetino MÂ, Checon Freitas JC, Cabral Coelho ER. 2020. High-performance of activated biocarbon based on agricultural biomass waste applied for 2,4-D herbicide removing from water: adsorption, kinetic and thermodynamic assessments. J Environ Sci Health B. 55(9):767–782. doi:10.1080/03601234.2020.1783178
  • Brunauer S, Emmett PH, Teller E. 1938. Adsorption of gases in multimolecular layers. J Am Chem Soc. 60(2):309–319. doi:10.1021/ja01269a023
  • Bulut E, Ozacar M, Sengil IA. 2008. Equilibrium and kinetic data and process design for adsorption of Congo red onto bentonite. J Hazard Mater. 154(1-3):613–622. doi:10.1016/j.jhazmat.2007.10.071
  • Carvalho MAFd, Aguiar DVA, Vaz BG, Ferreira MEdO, Andrade LAd, Ostroski IC. 2021. A potential material for removal of nitrogen compounds in petroleum and petrochemical derivates. Chem. Eng. Commun. 208(11):1564–1579. doi:10.1080/00986445.2020.1798938.
  • Clemente JS, Fedorak PM. 2005. A review of the occurrence, analyses, toxicity, and biodegradation of naphthenic acids. Chemosphere. 60(5):585–600. doi:10.1016/j.chemosphere.2005.02.065
  • Clothier LN, Gieg LM. 2016. Anaerobic biodegradation of surrogate naphthenic acids. Water Res. 90:156–166. doi:10.1016/j.watres.2015.12.019
  • Crank J. 1979. The mathematics of diffusion. Oxford: Oxford University Press.
  • da Silva DC, Oliveira Wanderley Neto Ad, Peres AEC, Neto AAD, Dantas TNC. 2020. Removal of oil from produced water by ionic flocculation using saponified babassu coconut oil. J Mater Res Technol. 9(3):4476–4484. doi:10.1016/j.jmrt.2020.02.075
  • de Carvalho MAF, Aguiar DVA, Vaz GB, de Oliveira ME, Andrade LA, Ostroski IC. 2021. A potential material for removal of nitrogen compounds in petroleum and petrochemical derivates. Chem Eng Commun. 208(11):1564–1579. doi:10.1080/00986445.2020.1798938
  • de Oliveira LH, Meneguin JG, Pereira MV, do Nascimento JF, Arroyo PA. 2019. Adsorption of hydrogen sulfide, carbon dioxide, methane, and their mixtures on activated carbon. Chem Eng Commun. 206:1544–1564. 10.1080/00986445.2019.1601627.
  • Dickhout JM, Moreno J, Biesheuvel PM, Boels L, Lammertink RGH, de Vos WM. 2017. Produced water treatment by membranes: a review from a colloidal perspective. J. Colloid Interface Sci. 487:523–534. doi:10.1016/j.jcis.2016.10.013
  • Dórea HS, Bispo JRL, Aragão KAS, Cunha BB, Navickiene S, Alves JPH, Romão LPC, Garcia CAB. 2007. Analysis of BTEX, PAHs and metals in the oilfield produced water in the State of Sergipe, Brazil. Microchem J. 85(2):234–238. doi:10.1016/j.microc.2006.06.002
  • Elsayed AM, Askalany AA, Shea AD, Dakkama HJ, Mahmoud S, Al-Dadah R, Kaialy W. 2017. A state of the art of required techniques for employing activated carbon in renewable energy powered adsorption applications. Renew Sustain Energy Rev. 79:503–519. doi:10.1016/j.rser.2017.05.172
  • Ferreira RC, de Lima HHC, Cândido AA, Junior OMC, Arroyo PA, Gauze GF, Carvalho KQ, Barros MASD. 2015. Adsorption of paracetamol using activated carbon of dende and babassu coconut mesocarp. Int J Biol Biomol Agric Food Biotechnol Eng. 9:575–580.
  • Freundlich H. 1907. Über die adsorption in Lösungen. Z Phys Chem. 57U:385–470. doi:10.1515/zpch-1907-5723
  • Gamal El-Din M, Fu H, Wang N, Chelme-Ayala P, Pérez-Estrada L, Drzewicz P, Martin JW, Zubot W, Smith DW. 2011. Naphthenic acids speciation and removal during petroleum-coke adsorption and ozonation of oil sands process-affected water. Sci Total Environ. 409(23):5119–5125. doi:10.1016/j.scitotenv.2011.08.033
  • Ghosh A, da Silva Santos AM, Cunha JR, Dasgupta A, Fujisawa K, Ferreira OP, Lobo AO, Terrones M, Terrones H, Viana BC. 2018. CO2 sensing by in-situ Raman spectroscopy using activated carbon generated from mesocarp of babassu coconut. Vib Spectrosc. 98:111–118. doi:10.1016/j.vibspec.2018.07.014
  • Grewer DM, Young RF, Whittal RM, Fedorak PM. 2010. Naphthenic acids and other acid-extractables in water samples from Alberta: what is being measured? Sci Total Environ. 408(23):5997–6010. doi:10.1016/j.scitotenv.2010.08.013
  • Guedidi H, Reinert L, Soneda Y, Bellakhal N, Duclaux L. 2017. Adsorption of ibuprofen from aqueous solution on chemically surface-modified activated carbon cloths. Arab J Chem. 10:S3584–S3594. doi:10.1016/j.arabjc.2014.03.007
  • Guilarduci VV. dS, Mesquita JP, de Martelli PB, Gorgulho HdF. 2006. Adsorção de fenol sobre carvão ativado em meio alcalino. Quím Nova. 29(6):1226–1232. doi:10.1590/S0100-40422006000600015
  • Gutierrez-Villagomez JM, Peru KM, Edington C, Headley JV, Pauli BD, Trudeau VL. 2019. Naphthenic acid mixtures and acid-extractable organics from oil sands process-affected water impair embryonic development of Silurana (Xenopus) tropicalis. Environ Sci Technol. 53(4):2095–2104. doi:10.1021/acs.est.8b04461
  • Headley JV, Peru KM, Barrow MP. 2016. Advances in mass spectrometric characterization of naphthenic acids fraction compounds in oil sands environmental samples and crude oil—a review. Mass Spec Rev. 35(2):311–328. doi:10.1002/mas.21472
  • Hendges LT, Costa TC, Temochko B, Gómez González SY, Mazur LP, Marinho BA, da Silva A, Weschenfelder SE, de Souza AAU, de Souza SMAGU. 2021. Adsorption and desorption of water-soluble naphthenic acid in simulated offshore oilfield produced water. Process Saf Environ Prot. 145:262–272. doi:10.1016/j.psep.2020.08.018
  • Ho Y, McKay G. 1999. Pseudo-second order model for sorption processes. Process Biochem. 34(5):451–465. doi:10.1016/S0032-9592(98)00112-5
  • Holowenko FM, MacKinnon MD, Fedorak PM. 2002. Characterization of naphthenic acids in oil sands wastewaters by gas chromatography-mass spectrometry. Water Res. 36(11):2843–2855. doi:10.1016/S0043-1354(01)00492-4
  • Hoppen MI, Carvalho KQ, Ferreira RC, Passig FH, Pereira IC, Rizzo-Domingues RCP, Lenzi MK, Bottini RCR. 2019. Adsorption and desorption of acetylsalicylic acid onto activated carbon of babassu coconut mesocarp. J Environ Chem Eng. 7(1):102862. doi:10.1016/j.jece.2018.102862
  • Hsu CS, Dechert GJ, Robbins WK, Fukuda EK. 2000. Naphthenic acids in crude oils characterized by mass spectrometry. Energy Fuels. 14(1):217–223. doi:10.1021/ef9901746
  • Hughes SA, Mahaffey A, Shore B, Baker J, Kilgour B, Brown C, Peru KM, Headley JV, Bailey HC. 2017. Using ultrahigh-resolution mass spectrometry and toxicity identification techniques to characterize the toxicity of oil sands process-affected water: the case for classical naphthenic acids. Environ Toxicol Chem. 36(11):3148–3157. doi:10.1002/etc.3892
  • Iranmanesh S, Harding T, Abedi J, Seyedeyn-Azad F, Layzell DB. 2014. Adsorption of naphthenic acids on high surface area activated carbons. J Environ Sci Health A Tox Hazard Subst Environ Eng. 49(8):913–922. doi:10.1080/10934529.2014.894790
  • Islam MS, McPhedran KN, Messele SA, Liu Y, Gamal El-Din M. 2018. Isotherm and kinetic studies on adsorption of oil sands process-affected water organic compounds using granular activated carbon. Chemosphere. 202:716–725. doi:10.1016/j.chemosphere.2018.03.149
  • Jain P, Sharma M, Dureja P, Sarma PM, Lal B. 2017. Bioelectrochemical approaches for removal of sulfate, hydrocarbon and salinity from produced water. Chemosphere. 166:96–108. doi:10.1016/j.chemosphere.2016.09.081
  • Kim ES, Liu Y, Gamal El-Din M. 2013. An in-situ integrated system of carbon nanotubes nanocomposite membrane for oil sands process-affected water treatment. J Memb Sci. 429:418–427. doi:10.1016/j.memsci.2012.11.077
  • Klemz AC, Damas MSP, González SYG, Mazur LP, Marinho BA, Weschenfelder SE, de Oliveira D, da Silva A, Valle JAB, de Souza AAU, et al. 2020. The use of oilfield gaseous byproducts as extractants of recalcitrant naphthenic acids from synthetic produced water. Sep Purif Technol. 248:117123. doi:10.1016/j.seppur.2020.117123
  • Lagergren SK. 1898. About the theory of so-called adsorption of soluble substances. Sven Vetenskapsakad Handingarl. 24:1–39.
  • Langmuir I. 1918. The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc. 40(9):1361–1403. doi:10.1021/ja02242a004
  • Leshuk T, Peru KM, de Oliveira Livera D, Tripp A, Bardo P, Headley JV, Gu F. 2018. Petroleomic analysis of the treatment of naphthenic organics in oil sands process-affected water with buoyant photocatalysts. Water Res. 141:297–306. doi:10.1016/j.watres.2018.05.011
  • Li E, Bolser DG, Kroll KJ, Brockmeier EK, Falciani F, Denslow ND. 2018. Comparative toxicity of three phenolic compounds on the embryo of fathead minnow, Pimephales promelas. Aquat. Toxicol. 201:66–72. doi:10.1016/j.aquatox.2018.05.024.
  • Liu A, Hong N, Zhu P, Guan Y. 2018. Understanding benzene series (BTEX) pollutant load characteristics in the urban environment. Sci. Total Environ. 619-620:938–945. doi:10.1016/j.scitotenv.2017.11.184.
  • Martinez-Iglesias A, Niasar HS, Xu C(, Ray MB. 2015. Adsorption of Model Naphthenic Acids in Water with Granular Activated Carbon. Adsorption Science & Technology. 33(10):881–894. doi:10.1260/0263-6174.33.10.881.
  • Milanez JT, Neves LC, Colombo RC, Shahab M, Roberto SR. 2018. Bioactive compounds and antioxidant activity of buriti fruits, during the postharvest, harvested at different ripening stages. Sci Hortic (Amsterdam). 227:10–21. doi:10.1016/j.scienta.2017.08.045
  • Mohamed MH, Wilson LD, Shah JR, Bailey J, Peru KM, Headley JV. 2015. A novel solid-state fractionation of naphthenic acid fraction components from oil sands process-affected water. Chemosphere. 136:252–258. doi:10.1016/j.chemosphere.2015.05.029
  • Mohanakrishna G, Al-Raoush RI, Abu-Reesh IM. 2021. Integrating electrochemical and bioelectrochemical systems for energetically sustainable treatment of produced water. Fuel. 285:119104. doi:10.1016/j.fuel.2020.119104
  • Neff JM. 2002. Bioaccumulation in marine organisms. Elsevier. Marine and Life Sciences, 3(1):24–38. doi:10.1016/B978-0-08-043716-3.X5000-3.
  • Niasar HS, Das S, Xu C(C), Ray MB. 2019. Continuous column adsorption of naphthenic acids from synthetic and real oil sands process-affected water (OSPW) using carbon-based adsorbents. Chemosphere. 214:511–518. doi:10.1016/j.chemosphere.2018.09.078
  • Niasar HS, Li H, Das S, Kasanneni TVR, Ray MB, Xu C(C). 2018. Preparation of activated petroleum coke for removal of naphthenic acids model compounds: Box-Behnken design optimization of KOH activation process. J Environ Manage. 211:63–72. doi:10.1016/j.jenvman.2018.01.051
  • Niasar HS, Li H, Kasanneni TVR, Ray MB, Xu C(C). 2016. Surface amination of activated carbon and petroleum coke for the removal of naphthenic acids and treatment of oil sands process-affected water (OSPW). Chem Eng J. 293:189–199. doi:10.1016/j.cej.2016.02.062
  • Parente MdOM, Rocha KS, Bessa RJB, Parente HN, Zanine AdM, Machado NAF, Lourenço Júnior JdB, Bezerra LR, Landim AV, Alves SP. 2020. Effects of the dietary inclusion of babassu oil or buriti oil on lamb performance, meat quality and fatty acid composition. Meat Sci. 160:107971. doi:10.1016/j.meatsci.2019.107971
  • Park J, Regalbuto JR. 1995. A simple, accurate determination of oxide PZC and the strong buffering effect of oxide surfaces at incipient wetness. J Colloid Interface Sci. 175(1):239–252. doi:10.1006/jcis.1995.1452
  • Petrobras. 2019. Annual report and form report number: 20-F 409. Rio de Janeiro, Brazil: Brazilian Petroleum Corporation-Petrobras.
  • Quinlan PJ, Tam KC. 2015. Water treatment technologies for the remediation of naphthenic acids in oil sands process-affected water. Chem Eng J. 279:696–714. doi:10.1016/j.cej.2015.05.062
  • Salgado MF, Abioye MA, Junoh MM, Santos JAP, Ani NF. 2018. Preparation of activated carbon from babassu endocarpunder microwave radiation by physical activation. IOP Conf Ser Earth Environ Sci. 105:012116. doi:10.1088/1755-1315/105/1/012116
  • Samrat Alam M, Cossio M, Robinson L, Wang X, Kenney JPL, Konhauser KO, MacKenzie MD, Ok YS, Alessi DS. 2016. Removal of organic acids from water using biochar and petroleum coke. Environ Technol Innov. 6:141–151. doi:10.1016/j.eti.2016.08.005
  • Santos DF, Chaves AR, Ostroski IC. 2021. Naphthenic acid removal in model and real aviation kerosene mixture. Chem Eng Commun. 208(10):1405–1418. doi:10.1080/00986445.2020.1783539
  • Santos TM, de Jesus FA, da Silva GF, Pontes LAM. 2020. Synthesis of activated carbon from oleifera moringa for removal of oils and greases from the produced water. Environ Nanotechnol Monit Manag. 14:100357. doi:10.1016/j.enmm.2020.100357
  • Schmitt CC, Chiaro SSX, Tanobe VOdA, Takeshita EV, Yamamoto CI. 2017. Regeneration of activated carbon from babassu coconut refuse, applied as a complementary treatment to conventional refinery hydrotreatment of diesel fuel. J Clean Prod. 140:1465–1469. doi:10.1016/j.jclepro.2016.10.004
  • Skoog DA, West DM, Ho J. 2004. Fundamentals of analytical chemistry. Belmont, USA: Cengage Learning.
  • Swigert JP, Lee C, Wong DCL, White R, Scarlett AG, West CE, Rowland SJ. 2015. Aquatic hazard assessment of a commercial sample of naphthenic acids. Chemosphere. 124:1–9. doi:10.1016/j.chemosphere.2014.10.052
  • Tollefsen KE, Petersen K, Rowland SJ. 2012. Toxicity of synthetic naphthenic acids and mixtures of these to fish liver cells. Environ Sci Technol. 46(9):5143–5150. doi:10.1021/es204124w
  • Veil JA. 2011. Produced water management options and technologies. In: K. Lee and J. Neff (Eds.), Produced water. New York (NY): Springer. p. 537–571. doi:10.1007/978-1-4614-0046-2_29
  • Vidovix TB, Januário EFD, Bergamasco R, Vieira AMS. 2019. Bisfenol A adsorption using a low-cost adsorbent prepared from residues of babassu coconut peels. Environ Technol. 42:2372–2384. doi:10.1080/09593330.2019.1701568.
  • Vinhal JO, Lima CF, Barbosa LCA. 2014. Analytical pyrolysis of the kernel and oil of babassu palm (Orbignya phalerata). J Anal Appl Pyrolysis. 107:73–81. doi:10.1016/j.jaap.2014.02.005
  • Winter C, Caetano JN, Araújo ABC, Chaves AR, Ostroski IC, Vaz BG, Pérez CN, Alonso CG. 2016. Activated carbons for chalcone production: Claisen-Schmidt condensation reaction. Chem Eng J. 303:604–610. doi:10.1016/j.cej.2016.06.058
  • Yue S, Ramsay BA, Wang J, Ramsay JA. 2016. Biodegradation and detoxification of naphthenic acids in oil sands process affected waters. Sci Total Environ. 572:273–279. doi:10.1016/j.scitotenv.2016.07.163

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.