113
Views
0
CrossRef citations to date
0
Altmetric
Articles

Nonisothermal reactor networks optimization using metaheuristics in a bi-level approach

, ORCID Icon & ORCID Icon

References

  • Achenie LEK, Biegler LT. 1986. Algorithmic synthesis of chemical reactor networks using mathematical programming. Ind Eng Chem Fund. 25(4):621–627. doi:10.1021/i100024a024
  • Achenie LKE, Biegler LT. 1990. A superstructure based approach to chemical reactor network synthesis. Comput Chem Eng. 14(1):23–40. doi:10.1016/0098-1354(90)87003-8
  • Aris R. 1960a. Studies in optimization-I: The optimum design of adiabatic reactors with several beds. Chem Eng Sci. 12(4):243–252. doi:10.1016/0009-2509(60)80002-4
  • Aris R. 1960b. Studies in optimization—II: Optimum temperature gradients in tubular reactors. Chem Eng Sci. 13(1):18–29. doi:10.1016/0009-2509(60)80014-0
  • Aris R. 1961. Studies in optimization-IV: The optimum conditions for a single reaction. Chem Eng Sci. 13(4):197–206. doi:10.1016/0009-2509(61)80017-1
  • Aris R. 1960c. Studies in optimization—III: The optimum operating conditions in sequences of stirred tank reactors. Chem Eng Sci. 13(2):75–81. doi:10.1016/0009-2509(60)80027-9
  • Ashley VM, Linke P. 2005. On the development and implementation of knowledge-driven optimisation schemes: An application in nonisothermal reactor network synthesis. Comput Aided Chem Eng. 20(C):175–180. doi:10.1016/S1570-7946(05)80151-8
  • Asiedu N, Hildebrandt D, Glasser D. 2014. Experimental simulation of a two-dimensional attainable region and its application in the optimization of production rate and process time of an adiabatic batch reactor. Ind Eng Chem Res. 53(34):13308–13319. doi:10.1021/ie501194c
  • Balakrishna S, Biegler LT. 1992a. Constructive targeting approaches for the synthesis of chemical reactor networks. Ind Eng Chem Res. 31(1):300–312. doi:10.1021/ie00001a041
  • Balakrishna S, Biegler LT. 1992b. Targeting strategies for the synthesis and energy integration of nonisothermal reactor networks. Ind Eng Chem Res. 31(9):2152–2164. doi:10.1021/ie00009a013
  • Balakrishna S, Biegler LT. 1993. A unified approach for the simultaneous synthesis of reaction, energy, and separation systems. Ind Eng Chem Res. 32(7):1372–1382. doi:10.1021/ie00019a012
  • Burri JF, Wilson SD, Manousiouthakis VI. 2002. Infinite dimensional state-space approach to reactor network synthesis: Application to attainable region construction. Comput Chem Eng. 26(6):849–862. doi:10.1016/S0098-1354(02)00008-X
  • Feinberg M. 2002. Toward a theory of process synthesis. Ind Eng Chem Res. 41(16):3751–3761. doi:10.1021/ie010807f
  • Fogler HS. 2016. Elements of chemical reaction engineering. 5th ed. New Jersey: Prentice-Hall Inc.
  • Glasser D, Hildebrandt D, Crowe C. 1987. A geometric approach to steady flow reactors: the attainable region and optimization in concentration space. Ind Eng Chem Res. 26(9):1803–1810. doi:10.1021/ie00069a014
  • Glasser B, Hildebrandt D, Glasser D. 1992. Optimal mixing for exothermic reversible reactions. Ind Eng Chem Res. 31(6):1541–1549. doi:10.1021/ie00006a017
  • Glasser D, Hildebrandt D. 1997. Reactor and process synthesis. Comput Chem Eng. 21 (1-2):S775–S783. doi:10.1016/S0098-1354(97)87597-7
  • Jacobs R, Jansweijer W. 2000. A knowledge-based system for reactor selection. Comput Chem Eng. 24(8):1781–1801. doi:10.1016/S0098-1354(00)00499-3
  • Gholizadeh Z, Soltani H, Javid M, Azar MS. 2020. A New robust approach for reactor network synthesis by combination of mathematical method and NSGAII. Int J Chem React Eng. 18(1):1–16. doi:10.1515/ijcre-2019-0090
  • Hentschel B, Peschel A, Freund H, Sundmacher K. 2014. Simultaneous design of the optimal reaction and process concept for multiphase systems. Chem Eng Sci. 115:69–87. doi:10.1016/j.ces.2013.09.046
  • Hildebrandt D, Glasser D. 1990. The attainable region and optimal reactor structures. Chem Eng Sci. 45(8):2161–2168. doi:10.1016/0009-2509(90)80091-R
  • Hildebrandt D, Glasser D, Crowe CM. 1990. Geometry of the attainable region generated by reaction and mixing: With and without constraints. Ind Eng Chem Res. 29(1):49–58. doi:10.1021/ie00097a009
  • Hillestad M. 2004. A systematic generation of reactor designs: I. Isothermal conditions. Comput Chem Eng. 28(12):2717–2726. doi:10.1016/j.compchemeng.2004.07.036
  • Hillestad M. 2005. A systematic generation of reactor designs: II. Nonisothermal conditions. Comput Chem Eng. 29(5):1101–1112. doi:10.1016/j.compchemeng.2004.11.009
  • Jackson R. 1968. Optimization of chemical reactors with respect to flow configuration. J Optim Theory Appl. 2(4):240–259. doi:10.1007/BF00937370
  • Jin S, Li X, Tao S. 2012. Globally optimal reactor network synthesis via the combination of linear programming and stochastic optimization approach. Chem Eng Res Des. 90(6):808–813. doi:10.1016/j.cherd.2011.10.005
  • Kauchali S, Rooney WC, Biegler LT, Glasser D, Hildebrandt D. 2002. Linear programming formulations for attainable region analysis. Chem Eng Sci. 57(11):2015–2028. doi:10.1016/S0009-2509(02)00101-X
  • Kirkpatrick S, Gelatt CD, Vecchi MP. 1983. Optimization by simulated annealing. Science 220(4598):671–680. doi:10.1126/science.220.4598.671
  • Kokossis AC, Floudas CA. 1990. Optimization of complex reactor networks - I. Isothermal operation. Chem Eng Sci. 45(3):595–614. doi:10.1016/0009-2509(90)87004-C
  • Kokossis AC, Floudas CA. 1994. Optimization of complex reactor networks - II. Nonisothermal operation. Chem Eng Sci. 49(7):1037–1051. doi:10.1016/0009-2509(94)80010-3
  • Lakshmanan A, Biegler LT. 1996a. Synthesis of optimal chemical reactor networks. Ind Eng Chem Res. 35(4):1344–1353. doi:10.1021/ie950344b
  • Lakshmanan A, Rooney WC, Biegler LT. 1999. A case study for reactor network synthesis: The vinyl chloride process. Comput Chem Eng. 23(4–5):479–495. doi:10.1016/S0098-1354(98)00287-7
  • Lakshmanan A, Biegler LT. 1996b. Synthesis of optimal chemical reactor networks with simultaneous mass integration. Ind Eng Chem Res. 35(12):4523–4536. doi:10.1021/ie960371h
  • Manousiouthakis VI, Justanieah AM, Taylor LA. 2004. The Shrink-Wrap algorithm for the construction of the attainable region: An application of the IDEAS framework. Comput Chem Eng. 28(9):1563–1575. doi:10.1016/j.compchemeng.2003.12.005
  • Marcoulaki E, Kokossis A. 1996. Stochastic optimisation of complex reaction systems. Comput Chem Eng. 20:S231–S236. doi:10.1016/0098-1354(96)00049-X
  • Mehta VL, Kokossis AC. 2000. Nonisothermal synthesis of homogeneous and multiphase reactor networks. AIChE J. 46(11):2256–2273. doi:10.1002/aic.690461117
  • Ming D, Glasser D, Hildebrandt D. 2013. Application of attainable region theory to batch reactors. Chem Eng Sci. 99:203–214. doi:10.1016/j.ces.2013.06.001
  • Pahor B, Irsic N, Kravanja Z. 2000. MINLP synthesis and modified attainable region analysis of reactor networks in overall process schemes using more compact reactor superstructure. Comput Chem Eng. 24(2-7):1403–1408. doi:10.1016/S0098-1354(00)00381-1
  • Pahor B, Kravanja Z, Bedenik NI. 2001. Synthesis of reactor networks in overall process flowsheets within multilevel MINLP approach. Comput Chem Eng. 25(4–6):765–774. doi:10.1016/S0098-1354(01)00652-4
  • Paynter JD, Haskins DE. 1970. Determination of optimal reactor type. Chem Eng Sci. 25(9):1415–1422. doi:10.1016/0009-2509(70)85064-3
  • Peschel A, Freund H, Sundmacher K. 2010. Methodology for the design of optimal chemical reactors based on the concept of elementary process functions. Ind Eng Chem Res. 49(21):10535–10548. doi:10.1021/ie100476q
  • Peschel A, Hentschel B, Freund H, Sundmacher K. 2012a. Design of optimal multiphase reactors exemplified on the hydroformylation of long chain alkenes. Chem Eng J. 188:126–141. doi:10.1016/j.cej.2012.01.123
  • Peschel A, Jörke A, Sundmacher K, Freund H. 2012b. Optimal reaction concept and plant wide optimization of the ethylene oxide process. Chem Eng J. 207-208:656–674. doi:10.1016/j.cej.2012.07.029
  • Ravimohan AL. 1971. Optimization of chemical reactor networks with respect to flow configuration. J Optim Theory Appl. 8(3):204–211. doi:10.1007/BF00932468
  • Schembecker G, Dröge T, Westhaus U, Simmrock KH. 1995. READPERT - Development, selection and design of chemical reactors. Chem Eng Process Intensif. 34(3):317–322. doi:10.1016/0255-2701(94)04019-6
  • Soltani H, Shafiei S. 2015. Adiabatic reactor network synthesis using coupled genetic algorithm with quasi linear programming method. Chem Eng Sci. 137:601–612. doi:10.1016/j.ces.2015.06.068
  • Soltani H, Shafiei S, Edraki J. 2016. Reactor network synthesis using coupled genetic algorithm with the quasi-linear programming method. ChemBiochemEngQ. 30(2):199–211. doi:10.15255/CABEQ.2014.2163
  • Soltani H. 2021. Isothermal and nonisothermal reactor network synthesis by combination of mathematical method and imperialist competitive algorithm. Chem Eng Sci. 239 :116617. doi:10.1016/j.ces.2021.116617
  • Rooney WC, Biegler LT. 2000. Multiperiod reactor network synthesis. Comput Chem Eng. 24(9–10):2055–2068. doi:10.1016/S0098-1354(00)00576-7
  • Wen Y, Biegler LT, Ochoa MP, Matthews L, Ferrio J, Weston J, Nikbin N. 2021. Continuous reactor network design for rigid polyol production. Chem Eng Sci. 230:116189. doi:10.1016/j.ces.2020.116189
  • Xie M, Freund H. 2018. Fast synthesis of optimal chemical reactor networks based on a universal system representation. Chem Eng Process Intensif. 123:280–290. doi:10.1016/j.cep.2017.11.011
  • Zhou W, Manousiouthakis VI. 2006. Non-ideal reactor network synthesis through IDEAS: Attainable region construction. Chem Eng Sci. 61(21):6936–6945. doi:10.1016/j.ces.2006.07.002
  • Zhou W, Manousiouthakis VI. 2009. Automating the AR construction for nonisothermal reactor networks. Comput Chem Eng. 33(1):176–180. doi:10.1016/j.compchemeng.2008.07.011

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.