467
Views
4
CrossRef citations to date
0
Altmetric
Articles

Catalytic pyrolysis and composition evaluation of tire pyrolysis oil

ORCID Icon, & ORCID Icon

References

  • Aguado R, Olazar M, Vélez D, Arabiourrutia M, Bilbao J. 2005. Kinetics of scrap tyre pyrolysis under fast heating conditions. J Anal Appl Pyrolysis. 73(2):290–298. doi:10.1016/j.jaap.2005.02.006
  • Ahoor AH, Zandi-Atashbar N. 2014. Fuel production based on catalytic pyrolysis of waste tires as an optimized model. Energy Convers Manage. 87:653–669. doi:10.1016/j.enconman.2014.07.033
  • Akhtar J, Amin NS. 2012. A review on operating parameters for optimum liquid oil yield in biomass pyrolysis. Renewable Sustainable Energy Rev. 16(7):5101–5109. doi:10.1016/j.rser.2012.05.033
  • Alsaleh A, Sattler ML. 2014. Waste tire pyrolysis: influential parameters and product properties. Curr Sustainable Renewable Energy Rep. 1(4):129–135. doi:10.1007/s40518-014-0019-0
  • Alvarez J, Lopez G, Amutio M, Mkhize NM, Danon B, van der Gryp P, Görgens JF, Bilbao J, Olazar M. 2017. Evaluation of the properties of tyre pyrolysis oils obtained in a conical spouted bed reactor. Energy. 128:463–474. doi:10.1016/j.energy.2017.03.163
  • Arabiourrutia M, Lopez G, Artetxe M, Alvarez J, Bilbao J, Olazar M. 2020. Waste tyre valorization by catalytic pyrolysis – a review. Renewable Sustainable Energy Rev. 129:109932–109924. doi:10.1016/j.rser.2020.109932
  • Arya S, Sharma A, Rawat M, Agrawal A. 2020. Tyre pyrolysis oil as an alternative fuel: a review. Mater Today: Proc. 28(4):2481–2484. doi:10.1016/j.matpr.2020.04.797
  • Barbooti MM, Mohamed TJ, Hussain AA, Abas FO. 2004. Optimization of pyrolysis conditions of scrap tires under inert gas atmosphere. J Anal Appl Pyrolysis. 72(1):165–170. doi:10.1016/j.jaap.2004.05.001
  • Boxiong S, Chunfei W, Cai L, Binbin G, Rui W. 2007. Pyrolysis of waste tyres: the influence of USY catalyst/tyre ratio on products. J Anal Appl Pyrolysis. 78(2):243–249. doi:10.1016/j.jaap.2006.07.004
  • Cheng YT, Huber GW. 2011. Chemistry of furan conversion into aromatics and olefins over HZSM-5: a model biomass conversion reaction. ACS Catal. 1(6):611–628. doi:10.1021/cs200103j
  • Choi GG, Oh SJ, Kim JS. 2016. Scrap tire pyrolysis using a new type two-stage pyrolyzer: effects of dolomite and olivine on producing a low-sulfur pyrolysis oil. Energy. 114:457–464. doi:10.1016/j.energy.2016.08.020
  • Conesa JA, Font R, Marcilla A. 1996. Gas from the pyrolysis of scrap tires in a fluidized bed reactor. Energy Fuels. 10(1):134–140. doi:10.1021/ef950152t
  • Cunliffe AM, Williams PT. 1998. Composition of oils derived from the batch pyrolysis of tyres. J Anal Appl Pyrolysis. 44(2):131–152. doi:10.1016/S0165-2370(97)00085-5
  • Cypres R. 1987. Aromatic hydrocarbons formation during coal pyrolysis. Fuel Process Technol. 15:1–15. doi:10.1016/0378-3820(87)90030-0
  • Czajczyńska D, Krzyżyńska R, Jouhara H, Spencer N. 2017. Use of pyrolytic gas from waste tire as a fuel: A review. Energy. 134:1121–1131. doi:10.1016/j.energy.2017.05.042
  • Demirbas A, Al-Sasi BO, Nizami AS. 2016. Conversion of waste tires to liquid products via sodium carbonate catalytic pyrolysis. Energy Sources Part A: Recovery Utilization Environ Effects. 38(16):2487–2493. doi:10.1080/15567036.2015.1052598
  • Depeyre D, Flicoteaux C, Chardaire C. 1985. Pure n-hexadecane thermal steam cracking. Ind Eng Chem Proc Des Dev. 24(4):1251–1258. doi:10.1021/i200031a059
  • Díez C, Martínez O, Calvo LF, Cara J, Morán A. 2004. Pyrolysis of tyres. Influence of the final temperature of the process on emissions and the calorific value of the products recovered. Waste Manage. 24(5):463–469. doi:10.1016/j.wasman.2003.11.006
  • Ding L, Zhou Z, Guo Q, Huo W, Yu G. 2015. Catalytic effects of Na2CO3 additive on coal pyrolysis and gasification. Fuel. 142:134–144. doi:10.1016/j.fuel.2014.11.010
  • Dooley S, Heyne J, Won SH, Dievart P, Ju Y, Dryer FL. 2014. Importance of a cycloalkane functionality in the oxidation of a real fuel. Energy Fuels. 28(12):7649–7661. doi:10.1021/ef5008962
  • Fernández AM, Barriocanal C, Alvarez R. 2012. Pyrolysis of a waste from the grinding of scrap tyres. J Hazard Mater. 203–204:236–243. doi:10.1016/j.jhazmat.2011.12.014
  • González J, Encinar J, Canito J, Rodrı́guez J. 2001. Pyrolysis of automobile tyre waste. Influence of operating variables and kinetics study. J Anal Appl Pyrolysis. 58-59(59):667–683. doi:10.1016/S0165-2370(00)00201-1
  • Hattori H. 2001. Solid base catalysts: generation of basic sites and application to organic synthesis. Appl Catal A. 222(1–2):247–259. doi:10.1016/S0926-860X(01)00839-0
  • Hattori H. 2015. Solid base catalysts: fundamentals and their applications in organic reactions. Appl Catal, A. 504:103–109. doi:10.1016/j.apcata.2014.10.060
  • Haykiri-Acma H. 2006. The role of particle size in the non-isothermal pyrolysis of hazelnut shell. J Anal Appl Pyrolysis. 75(2):211–216. doi:10.1016/j.jaap.2005.06.002
  • Huang H, Tang L. 2009. Pyrolysis treatment of waste tire powder in a capacitively coupled RF plasma reactor. Energy Convers Manage. 50(3):611–617. doi:10.1016/j.enconman.2008.10.023
  • Ilkiliç C, Aydin H. 2011. Fuel production from waste vehicle tires by catalytic pyrolysis and its application in a diesel engine. Fuel Process Technol. 92(5):1129–1135. doi:10.1016/j.fuproc.2011.01.009
  • Islam MR, Haniu H, Beg MRA. 2008. Liquid fuels and chemicals from pyrolysis of motorcycle tire waste: Product yields, compositions and related properties. Fuel. 87(13–14):3112–3122. doi:10.1016/j.fuel.2008.04.036
  • Islam MR, Parveen M, Haniu H, Sarker MRI. 2010. Innovation in pyrolysis technology for management of scrap tire: a solution of energyand environment. Int J Environ Sci Dev. 1(1):89–96. doi:10.7763/IJESD.2010.V1.18
  • Islam MR, Tushar MSHK, Haniu H. 2008. Production of liquid fuels and chemicals from pyrolysis of Bangladeshi bicycle/rickshaw tire wastes. J Anal Appl Pyrolysis. 82(1):96–109. doi:10.1016/j.jaap.2008.02.005
  • Jasminská N, Brestovič T, Čarnogurská M. 2013. The effect of temperature pyrolysis process of used tires on the quality of output products. Acta Mech Autom. 7(1):20–25. doi:10.2478/ama-2013-0004
  • Jindal MK, Jha MK. 2016. Catalytic hydrothermal liquefaction of waste furniture sawdust to bio-oil. Indian Chem Eng. 58(2):157–171. doi:10.1080/00194506.2015.1006145
  • Juma M, Koreňová Z, Markoš J, Jelemensky L, Bafrnec M. 2006. Pyrolysis and combustion of scrap tire. Petrol Coal. 48(1):15–26. doi:10.1002/pat.811
  • Kabir G, Hameed BH. 2017. Recent progress on catalytic pyrolysis of lignocellulosic biomass to high-grade bio-oil and bio-chemicals. Renewable Sustainable Energy Rev. 70:945–967. doi:10.1016/j.rser.2016.12.001
  • Kaminsky W, Mennerich C. 2001. Pyrolysis of synthetic tire rubber in a fluidised-bed reactor to yield 1,3-butadiene, styrene and carbon black. J Anal Appl Pyrolysis. 58-59:803–811. doi:10.1016/S0165-2370(00)00129-7
  • Kandah M, Al-Otoom A, Al-Harahsheh M, Al-Zoubi R, Al-Harahsheh A. 2017. Extracting oil from used auto tires at low temperature after chemical treatment. Waste Manage. 61:307–314. doi:10.1016/j.wasman.2017.01.005
  • Keener TC, Davis WT. 1984. Study of the reaction of S02 with NaHCO3 and Na2CO3. J Air Pollut Control Assoc. 34(6):651–654. doi:10.1080/00022470.1984.10465793
  • Kimura S, Smith JM. 1987. Kinetics of the sodium carbonate-sulfur dioxide reaction. AIChE J. 33(9):1522–1532. doi:10.1002/aic.690330912
  • Kordoghli S, Paraschiv M, Kuncser R, Tazerout M, Zagrouba F. 2017. Catalysts’ influence on thermochemical decomposition of waste tires. Environ Prog Sustainable Energy. 36(5):1560–1567. doi:10.1002/ep.12605
  • Kyari M, Cunliffe A, Williams PT. 2005. Characterization of oils, gases, and char in relation to the pyrolysis of different brands of scrap automotive tires. Energy Fuels. 19(3):1165–1173. doi:10.1021/ef049686x
  • Labaki M, Jeguirim M. 2017. Thermochemical conversion of waste tyres-a review. Environ Sci Pollut Res Int. 24(11):9962–9992. doi:10.1007/s11356-016-7780-0
  • Laresgoiti MF, Caballero BM, De Marco I, Torres A, Cabrero MA, Chomón MJ. 2004. Characterization of the liquid products obtained in tyre pyrolysis. J Anal Appl Pyrolysis. 71(2):917–934. doi:10.1016/j.jaap.2003.12.003
  • Lee DC, Georgakis C. 1981. A single, particle-size model for sulfur retention in fluidized bed coal combustors. AIChE J. 27(3):472–481. doi:10.1002/aic.690270317
  • Leonard C. 2015. Development of an innovative pyrolysis plant for the production of secondary raw materials. PhD thesis. Bologna: Università di Bologna.
  • Li SQ, Yao Q, Chi Y, Yan JH, Cen KF. 2004. Pilot-scale pyrolysis of scrap tires in a continuous rotary kiln reactor. Ind Eng Chem Res. 43(17):5133–5145. doi:10.1021/ie030115m
  • Marculescu C, Antonini G, Badea A, Apostol T. 2007. Pilot installation for the thermo-chemical characterisation of solid wastes. Waste Manage. 27(3):367–374. doi:10.1016/j.wasman.2006.02.011
  • Martínez JD, Lapuerta M, García-Contreras R, Murillo R, García T. 2013. Fuel properties of tire pyrolysis liquid and its blends with diesel fuel. Energy Fuels. 27(6):3296–3305. doi:10.1021/ef400602e
  • Martínez JD, Rodríguez-Fernández J, Sánchez-Valdepeñas J, Murillo R, García T. 2014. Performance and emissions of an automotive diesel engine using a tire pyrolysis liquid blend. Fuel. 115:490–499. doi:10.1016/j.fuel.2013.07.051
  • Mastral AM, Murillo R, Callen MS, Garcia T. 2000. Optimisation of scrap automotive tyres recycling into valuable liquid fuels. Resour Conserv Recycl. 29(4):263–272. doi:10.1016/S0921-3449(00)00051-3
  • Miandad R, Barakat MA, Rehan M, Aburiazaiza AS, Gardy J, Nizami AS. 2018. Effect of advanced catalysts on tire waste pyrolysis oil. Process Saf Environ Prot. 116:542–552. doi:10.1016/j.psep.2018.03.024
  • Omwoyo JB, Kimilu RK, Onyari JM. 2021. Effects of temperature and catalytic reduction of sulfur content on kinematic viscosity and specific gravity of tire pyrolysis oil. Chem Eng Commun. 0(0):1–8. doi:10.1080/00986445.2021.2015339
  • Osayi JI, Iyuke S, Daramola MO, Osifo P, Van Der Walt IJ, Ogbeide SE. 2018. Evaluation of pyrolytic oil from used tires and natural rubber (Hevea brasiliensis. Chem Eng Commun. 205(6):805–821. doi:10.1080/00986445.2017.1422493
  • Otta OW. 2016. Two-stage chemical and enzymatic strategies for the preparation of biodiesel from croton megalocarpus oil and evaluation of its engine performance and oxidation stability. [Ph.D. thesis]. Nairobi (Kenya): University of Nairobi.
  • Popa T, Fan M, Argyle MD, Slimane RB, Bell DA, Towler BF. 2013. Catalytic gasification of a Powder River Basin coal. Fuel. 103:161–170. doi:10.1016/j.fuel.2012.08.049
  • Quek A, Balasubramanian R. 2013. Liquefaction of waste tires by pyrolysis for oil and chemicals - a review. J Anal Appl Pyrolysis. 101:1–16. doi:10.1016/j.jaap.2013.02.016
  • Rodriguez IM, Laresgoiti MF, Cabrero MA, Torres A, Chomon MJ, Caballero B. 2001. Pyrolysis of scrap tyres. Fuel Process Technol. 72(1):9–22. doi:10.1016/S0378-3820(01)00174-6
  • Rofiqul IM, Haniu H, Rafiqul ABM. 2007. Limonene-rich liquids from pyrolysis of heavy automotive tire wastes. J Environ Eng. 2(4):681–695. doi:10.1299/jee.2.681
  • Shah J, Rasul JM, Mabood F. 2008. Catalytic pyrolysis of waste tyre rubber into hydrocarbons via base catalysts. Iran J Chem Chem Eng. 27(2):103–109.
  • Singh J. 2017. A review paper on pyrolysis process of waste tyre. Int J Appl Res. 1(13):258–262.
  • Thangalazhy-Gopakumar S, Adhikari S, Chattanathan SA, Gupta RB. 2012. Catalytic pyrolysis of green algae for hydrocarbon production using H + ZSM-5 catalyst . Bioresour Technol. 118:150–157. doi:10.1016/j.biortech.2012.05.080
  • Ucar S, Karagoz S, Ozkan AR, Yanik J. 2005. Evaluation of two different scrap tires as hydrocarbon source by pyrolysis. Fuel. 84(14–15):1884–1892. doi:10.1016/j.fuel.2005.04.002
  • Ukei H, Hirose T, Horikawa S, Takai Y, Taka M, Azuma N, Ueno A. 2000. Catalytic degradation of polystyrene into styrene and a design of recyclable polystyrene with dispersed catalysts. Catal Today. 62(1):67–75. doi:10.1016/S0920-5861(00)00409-0
  • Vijayaram TR. 2009. A technical review on rubber. Int J Des Manuf Technol. 3(1):25–37. doi:10.18000/ijodam.70043
  • Williams PT. 2013. Pyrolysis of waste tyres: a review. Waste Manage. 33(8):1714–1728. doi:10.1016/j.wasman.2013.05.003
  • Williams PT, Besler S, Taylor DT. 1993. The batch pyrolysis of tyre waste - fuel properties of the derived pyrolytic oil and overall plant economics. Proc Inst Mech Eng, Part A: J Power Energy. 207(1):55–63. doi:10.1243/PIME_PROC_1993_207_007_02
  • Williams PT, Brindle AJ. 2003. Aromatic chemicals from the catalytic pyrolysis of scrap tyres. J Anal Appl Pyrolysis. 67(1):143–164. doi:10.1016/S0165-2370(02)00059-1
  • Williams PT, Taylor DT. 1993. Aromatization of tyre pyrolysis oil to yield polycyclic aromatic hydrocarbons. Fuel. 72(11):1469–1474. doi:10.1016/0016-2361(93)90002-J
  • Williams PT, Williams EA. 1999. Fluidised bed pyrolysis of low density polyethylene to produce petrochemical feedstock. J Anal Appl Pyrolysis. 51(1–2):107–126. doi:10.1016/S0165-2370(99)00011-X
  • Yaqoob H, Teoh YH, Jamil MA, Gulzar M. 2021. Potential of tire pyrolysis oil as an alternate fuel for diesel engines: a review. J Inst Energy. 96:205–221. doi:10.1016/j.joei.2021.03.002
  • Zhang X, Wang T, Ma L, Chang J. 2008. Vacuum pyrolysis of waste tires with basic additives. Waste Manage. 28(11):2301–2310. doi:10.1016/j.wasman.2007.10.009

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.