393
Views
5
CrossRef citations to date
0
Altmetric
Articles

Biosorption studies of methylene blue dye using NaOH-treated Aspergillus niger-filled sodium alginate microbeads

, ORCID Icon &

References

  • Ahmed Alshareef S, Abdullah Alqadami A, Ali Khan M, Alanazi HS, Raza Siddiqui M, Jeon B-H. 2022. Simultaneous co-hydrothermal carbonization and chemical activation of food wastes to develop hydrochar for aquatic environmental remediation. Bioresour Technol. 347:126363. doi:10.1016/j.biortech.2021.126363
  • Alqadami AA, Khan MA, Siddiqui MR, Alothman ZA, Sumbul S. 2020. A facile approach to develop industrial waste encapsulated cryogenic alginate beads to sequester toxic bivalent heavy metals. J King Saud Univ Sci. 32(2):1444–1450. doi:10.1016/j.jksus.2019.11.040
  • Alshareef SA, Otero M, Alanazi HS, Siddiqui MR, Khan MA, Alothman ZA. 2021. Upcycling olive oil cake through wet torrefaction to produce hydrochar for water decontamination. Chem Eng Res Des. 170:13–22. doi:10.1016/j.cherd.2021.03.031
  • Alver E, Metin AU, Brouers F. 2020. Methylene blue adsorption on magnetic alginate/rice husk bio-composite. Int J Biol Macromol. 154:104–113. doi:10.1016/j.ijbiomac.2020.02.330
  • Asadi S, Eris S, Azizian S. 2018. Alginate-based hydrogel beads as a biocompatible and efficient adsorbent for dye removal from aqueous solutions. ACS Omega. 3(11):15140–15148. doi:10.1021/acsomega.8b02498
  • Azizian S. 2004. Kinetic models of sorption: a theoretical analysis. J Colloid Interf Sci. 276(1):47–52. [Database] doi:10.1016/j.jcis.2004.03.048
  • Balarak D, Al-Musawi TJ, Mohammed IA, Abasizadeh H. 2020. The eradication of reactive black 5 dye liquid wastes using Azolla filiculoides aquatic fern as a good and an economical biosorption agent. SN Appl Sci. 2(6):1015.
  • Balarak D, Zafariyan M, Igwegbe CA, Onyechi KK, Ighalo JO. 2021. Adsorption of acid blue 92 dye from aqueous solutions by single-walled carbon nanotubes: isothermal, kinetic, and thermodynamic studies. Environ Process. 8(2):869–888. doi:10.1007/s40710-021-00505-3
  • Bankole PO, Adekunle AA, Govindwar SP. 2019. Demethylation and desulfonation of textile industry dye, Thiazole Yellow G by Aspergillus niger LAG. Biotechnol Rep (Amst). 23:e00327. doi:10.1016/j.btre.2019.e00327
  • Barakat MA, Al-Hutailah RI, Qayyum E, Rashid J, Kuhn JN. 2014. Pt nanoparticles/TiO2 for photocatalytic degradation of phenols in wastewater. Environ Technol. 35(1-4):137–144. doi:10.1080/09593330.2013.820796
  • Benkhaya S, M'rabet S, El Harfi A. 2020. A review on classifications, recent synthesis and applications of textile dyes. Inorg Chem Commun. 115:107891. doi:10.1016/j.inoche.2020.107891
  • Berradi M, Hsissou R, Khudhair M, Assouag M, Cherkaoui O, el Bachiri A, el Harfi A. 2019. Textile finishing dyes and their impact on aquatic environs. Heliyon. 5(11):e02711. doi:10.1016/j.heliyon.2019.e02711
  • Bhateria R, Dhaka R. 2019. Optimization and statistical modelling of cadmium biosorption process in aqueous medium by Aspergillus niger using response surface methodology and principal component analysis. Ecol Eng. 135:127–138. doi:10.1016/j.ecoleng.2019.05.010
  • Bildik F, Turan GT, Barim G, Senkal BF. 2014. Removal of acidic and basic dyes from water using crosslinked polystyrene based quaternary ethyl piperazine resin. Sep Sci Technol. 49(11):1700–1705. doi:10.1080/01496395.2014.906462
  • Boukhalfa N, Boutahala M, Djebri N, Idris A. 2019. Kinetics, thermodynamics, equilibrium isotherms, and reusability studies of cationic dye adsorption by magnetic alginate/oxidized multiwalled carbon nanotubes composites. Int J Biol Macromol. 123:539–548. doi:10.1016/j.ijbiomac.2018.11.102
  • Braniša J, Jomová K, Lapčík Ľ, Porubská M. 2021. Testing of electron beam irradiated sheep wool for adsorption of Cr(III) and Co(II) of higher concentrations. Polym Test. 99:107191. doi:10.1016/j.polymertesting.2021.107191
  • Calimli MH. 2021. Magnetic nanocomposite cobalt-multiwalled carbon nanotube and adsorption kinetics of methylene blue using an ultrasonic batch. Int J Environ Sci Technol. 18(3):723–740.
  • Chu W-L, Phang S-M. 2019. Biosorption of heavy metals and dyes from industrial effluents by microalgae. In: Microalgae biotechnology for development of biofuel and wastewater treatment. Singapore: Springer; p. 599–634.
  • Drumond Chequer FM, de Oliveira GAR, Anastacio Ferraz ER, Carvalho J, Boldrin Zanoni MV, de Oliveir DP. 2013. Textile dyes: dyeing process and environmental impact. In: Eco-friendly textile dyeing and finishing. London: InTech; p. 151–176. doi:10.5772/3436
  • Dubinin M, Raduchkevich L. 1947. The equation of the characteristic curve of the activated charcoal. Proc Acad Sci USSR Phys Chem Sect. 55:331–337.
  • Duran H, Sismanoglu S, Sismanoglu T. 2019. Binary biomaterials (inorganic material/natural resin): synthesis, characterization and performance for adsorption of dyes. J Ind Chem Soc. 96:1245–1251.
  • Elektorowicz M, Muslat Z. 2008. Removal of heavy metals from oil sludge using ion exchange textiles. Environ Technol. 29(4):393–399. doi:10.1080/09593330801984290
  • Freundlich H. 1906. Over the adsorption in solution. J Phys Chem. 57:385–471.
  • Fu Y, Viraraghavan T. 2000. Removal of a dye from an aqueous solution by the fungus Aspergillus niger. Water Qual Res J. 35(1):95–112. doi:10.2166/wqrj.2000.006
  • Fu Y, Viraraghavan T. 2002. Removal of congo red from an aqueous solution by fungus Aspergillus niger. Adv Environ Res. 7(1):239–247. doi:10.1016/S1093-0191(01)00123-X
  • Galeano RMS, Franco DG, Chaves PO, Giannesi GC, Masui DC, Ruller R, Corrêa BO, da Silva Brasil M, Zanoelo FF. 2021. Plant growth promoting potential of endophytic Aspergillus niger 9-p isolated from native forage grass in Pantanal of Nhecolândia region, Brazil. Rhizosphere. 18:100332. doi:10.1016/j.rhisph.2021.100332
  • Gáplovská K, Šimonovičová A, Halko R, Okenicová L, Žemberyová M, Čerňanský S, Brandeburová P, Mackuľak T. 2018. Study of the binding sites in the biomass of Aspergillus niger wild-type strains by FTIR spectroscopy. Chem Pap. 72(9):2283–2288. doi:10.1007/s11696-018-0487-6
  • Giles CH, MacEwan TH, Nakhwa SN, Smith D. 1960. Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. J Chem Soc (Resumed). 786:3973–3993.
  • Guesmi Y, Agougui H, Lafi R, Jabli M, Hafiane A. 2018. Synthesis of hydroxyapatite-sodium alginate via a co-precipitation technique for efficient adsorption of Methylene Blue dye. J Mol Liq. 249:912–920. doi:10.1016/j.molliq.2017.11.113
  • Harkins W, Jura E. 1944. The decrease of free surface energy as a basis for the development of equations of adsorption isotherms, and the existence of two condensed phases in films on solids. J Phys Chem. 12:112–113.
  • Hasyimah NAR, Furusawa G, Amirul AA. 2021. Biosorption of a dye and heavy metals using dead cells of filamentous bacterium, Aureispira sp. CCB-QB1. Int J Environ Sci Technol. 18(6):1627–1636. doi:10.1007/s13762-020-02918-3
  • Hevira L, Ighalo JO, Zein R. 2020. Biosorption of indigo carmine from aqueous solution by Terminalia catappa shell. J Environ Chem Eng. 8(5):104290. doi:10.1016/j.jece.2020.104290
  • Heybet EN, Ugraskan V, Isik B, Yazici O. 2021. Adsorption of methylene blue dye on sodium alginate/polypyrrole nanotube composites. Int J Biol Macromol. 193(Pt A):88–99. doi:10.1016/j.ijbiomac.2021.10.084
  • Isik B, Kurtoglu AE, Gurdag G, Keceli G. 2021. Radioactive cesium ion removal from wastewater using polymer metal oxide composites. J Hazard Mater. 403:123652.
  • Isik B, Ugraskan V. 2021. Adsorption of methylene blue on sodium alginate–flax seed ash beads: isotherm, kinetic and thermodynamic studies. Int J Biol Macromol. 167:1156–1167.
  • Isik B, Ugraskan V, Cakar F, Yazici O. 2022. A comparative study on the adsorption of toxic cationic dyes by Judas tree (Cercis siliquastrum) seeds. Biomass Convers Bioref. doi:10.1007/s13399-022-02679-8
  • Isik B, Ugraskan V, Cankurtaran O. 2022. Effective biosorption of methylene blue dye from aqueous solution using wild macrofungus (Lactarius piperatus). Sep Sci Technol. 57(6):854–871. doi:10.1080/01496395.2021.1956540
  • Karakus S, Sismanoglu S, Akdut G, Urk O, Tan E, Sismanoglu T, Kilislioglu A. 2017. Removal of basic blue 3 from the aqueous solution with ternary polymer nanocomposite: swelling, kinetics, isotherms and error function. J Chem Soc Pak. 39:17–25.
  • Khalaf M. 2008. Biosorption of reactive dye from textile wastewater by non-viable biomass of Aspergillus niger and Spirogyra sp. Bioresour Technol. 99(14):6631–6634. doi:10.1016/j.biortech.2007.12.010
  • Khan MA, Gee E, Choi J, Kumar M, Jung W, Timmes TC, Kim H-C, Jeon B-H. 2014. Adsorption of cobalt onto graphite nanocarbon–impregnated alginate beads: equilibrium, kinetics, and thermodynamics studies. Chem Eng Commun. 201(3):403–418. doi:10.1080/00986445.2013.773426
  • Khan MA, Jung W, Kwon O-H, Jung YM, Paeng K-J, Cho S-Y, Jeon B-H. 2014. Sorption studies of manganese and cobalt from aqueous phase onto alginate beads and nano-graphite encapsulated alginate beads. J Ind Eng Chem. 20(6):4353–4362. doi:10.1016/j.jiec.2014.01.043
  • Khan MA, Wabaidur SM, Siddiqui MR, Alqadami AA, Khan AH. 2020. Silico-manganese fumes waste encapsulated cryogenic alginate beads for aqueous environment de-colorization. J Clean Prod. 244:118867. doi:10.1016/j.jclepro.2019.118867
  • Kumar M, Tamilarasan R, Sivakumar V. 2013. Adsorption of Victoria blue by carbon/Ba/alginate beads: kinetics, thermodynamics and isotherm studies. Carbohydr Polym. 98(1):505–513. doi:10.1016/j.carbpol.2013.05.078
  • Lagergren S. 1898. About the theory of so-called adsorption of soluble substances. Kongl Vetensk Acad Handl. 24:1–39.
  • Langmuir I. 1918. The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc. 40:1361–1403. doi:10.1021/ja02242a004
  • Lei Y, Cui Y, Huang Q, Dou J, Gan D, Deng F, Liu M, Li X, Zhang X, Wei Y. 2019. Facile preparation of sulfonic groups functionalized Mxenes for efficient removal of methylene blue. Ceram Int. 45(14):17653–17661. doi:10.1016/j.ceramint.2019.05.331
  • Lellis B, Fávaro-Polonio CZ, Pamphile JA, Polonio JC. 2019. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol Res Innov. 3(2):275–290. doi:10.1016/j.biori.2019.09.001
  • Li S, Huang J, Mao J, Zhang L, He C, Chen G, Parkin IP, Lai Y. 2019. In vivo and in vitro efficient textile wastewater remediation by Aspergillus niger biosorbent. Nanoscale Adv. 1(1):168–176. doi:10.1039/C8NA00132D
  • Lima EC, Hosseini-Bandegharaei A, Moreno-Piraján JC, Anastopoulos I. 2019. A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. J Mol Liq. 273:425–434. doi:10.1016/j.molliq.2018.10.048
  • Liu C, Omer AM, Ouyang X. 2018. Adsorptive removal of cationic methylene blue dye using carboxymethyl cellulose/k-carrageenan/activated montmorillonite composite beads: isotherm and kinetic studies. Int J Biol Macromol. 106:823–833. doi:10.1016/j.ijbiomac.2017.08.084
  • Mahmoud MS, Mostafa MK, Mohamed SA, Sobhy NA, Nasr M. 2017. Bioremediation of red azo dye from aqueous solutions by Aspergillus niger strain isolated from textile wastewater. J Environ Chem Eng. 5(1):547–554. doi:10.1016/j.jece.2016.12.030
  • Mahramanlioglu M, Kizilcikli I, Bicer IO. 2002. Adsorption of fluoride from aqueous solution by acid treated spent bleaching earth. J Fluor Chem. 115(1):41–47. doi:10.1016/S0022-1139(02)00003-9
  • Mokhtar A, Abdelkrim S, Zaoui F, Sassi M, Boukoussa B. 2020. Improved stability of starch@layered-materials composite films for methylene blue dye adsorption in aqueous solution. J Inorg Organomet Polym. 30(9):3826–3831. doi:10.1007/s10904-020-01536-3
  • Mukhopadhyay M. 2008. Role of surface properties during biosorption of copper by pretreated Aspergillus niger biomass. Colloid Surf A Physicochem Eng Asp. 329(1–2):95–99. doi:10.1016/j.colsurfa.2008.06.052
  • Naskar A, Majumder R. 2017. Understanding the adsorption behaviour of acid yellow 99 on Aspergillus niger biomass. J Mol Liq. 242:892–899. doi:10.1016/j.molliq.2017.05.155
  • Naushad M, Alqadami AA, AlOthman ZA, Alsohaimi IH, Algamdi MS, Aldawsari AM. 2019. Adsorption kinetics, isotherm and reusability studies for the removal of cationic dye from aqueous medium using arginine modified activated carbon. J Mol Liq. 293:111442. doi:10.1016/j.molliq.2019.111442
  • Salleh MAM, Mahmoud DK, Karim WAWA, Idris A. 2011. Cationic and anionic dye adsorption by agricultural solid wastes: a comprehensive review. Desalination. 280(1-3):1–13. doi:10.1016/j.desal.2011.07.019
  • Sartape AS, Mandhare AM, Jadhav VV, Raut PD, Anuse MA, Kolekar SS. 2017. Removal of malachite green dye from aqueous solution with adsorption technique using Limonia acidissima (wood apple) shell as low cost adsorbent. Arab J Chem. 10:S3229–S3238. doi:10.1016/j.arabjc.2013.12.019
  • Scroccarello A, Molina-Hernández B, della Pelle F, Ciancetta J, Ferraro G, Fratini E, Valbonetti L, Chaves Copez C, Compagnone D. 2021. Effect of phenolic compounds-capped AgNPs on growth inhibition of Aspergillus niger. Colloids Surf B Biointerfaces. 199:111533. doi:10.1016/j.colsurfb.2020.111533
  • Shah SS, Palmieri MC, Sponchiado SRP, Bevilaqua D. 2020. Environmentally sustainable and cost-effective bioleaching of aluminum from low-grade bauxite ore using marine-derived Aspergillus niger. Hydrometallurgy. 195:105368. doi:10.1016/j.hydromet.2020.105368
  • Sismanoglu T, Aroguz AZ. 2015. Adsorption kinetics of diazo-dye from aqueous solutions by using natural origin low-cost biosorbents. Desalin Water Treat. 54(3):736–743. doi:10.1080/19443994.2014.887039
  • Şişmanoğlu T, Pozan GS. 2016. Adsorption of congo red from aqueous solution using various TiO2 nanoparticles. Desalin Water Treat. 57(28):13318–13333. doi:10.1080/19443994.2015.1056834
  • Sivasamy A, Sundarabal N. 2011. Biosorption of an azo dye by Aspergillus niger and Trichoderma sp. fungal biomasses. Curr Microbiol. 62(2):351–357. doi:10.1007/s00284-010-9713-3
  • Ugraskan V, Isik B, Yazici O. 2022a. Adsorptive removal of methylene blue from aqueous solutions by porous boron carbide: isotherm, kinetic and thermodynamic studies. Chem Eng Commun. 209(8):1111–1129. doi:10.1080/00986445.2021.1948406
  • Ugraskan V, Isik B, Yazici O, Cakar F. 2022b. Removal of Safranine T by a highly efficient adsorbent (Cotinus coggygria leaves): isotherms, kinetics, thermodynamics, and surface properties. Surf Interf. 28:101615. doi:10.1016/j.surfin.2021.101615
  • Vergili I, Gönder ZB, Kaya Y, Gürdağ G, Çavuş S. 2017. Sorption of Pb (II) from battery industry wastewater using a weak acid cation exchange resin. Process Saf Environ Prot. 107:498–507. doi:10.1016/j.psep.2017.03.018
  • Wang H, Li Z, Yahyaoui S, Hanafy H, Seliem MK, Bonilla-Petriciolet A, Luiz Dotto G, Sellaoui L, Li Q. 2021. Effective adsorption of dyes on an activated carbon prepared from carboxymethyl cellulose: experiments, characterization and advanced modelling. Chem Eng J. 417:128116. doi:10.1016/j.cej.2020.128116
  • Wang S, Wang J, Liang W, Yao L, Gao W. 2019. Promotion of ginsenosides production in a co-cultivation system of Panax ginseng adventitious roots and immobilized Aspergillus niger. Ind Crop Prod. 140:111564. doi:10.1016/j.indcrop.2019.111564
  • Wang J, Xiong F, Liu H, Zhang T, Li Y, Li C, Xia W, Wang H, Liu H. 2019. Study of the corrosion behavior of Aspergillus niger on 7075-T6 aluminum alloy in a high salinity environment. Bioelectrochemistry. 129:10–17. doi:10.1016/j.bioelechem.2019.04.020
  • You H, Huang B, Cao C, Liu X, Sun X, Xiao L, Qiu J, Luo Y, Qian Q, Chen Q. 2021. Adsorption–desorption behavior of methylene blue onto aged polyethylene microplastics in aqueous environments. Mar Pollut Bull. 167:112287. doi:10.1016/j.marpolbul.2021.112287
  • Zhao R, Li Y, Sun B, Chao S, Li X, Wang C, Zhu G. 2019. Highly flexible magnesium silicate nanofibrous membranes for effective removal of methylene blue from aqueous solution. Chem Eng J. 359:1603–1616. doi:10.1016/j.cej.2018.11.011

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.