121
Views
4
CrossRef citations to date
0
Altmetric
Articles

Valorization of tannin rich triphala waste for simultaneous tannase and gallic acid production under solid state fermentation by Aspergillus niger

& ORCID Icon

References

  • Abdul Manan M, Webb C. 2017. Modern microbial solid state fermentation technology for future biorefineries for the production of added-value products. Biofuel Res J. 16:730–740.
  • Aboubakr AH, El-Sahn MA, El-Banna AA. 2013. Some factors affecting tannase production by Aspergillus niger Van Tieghem. Braz J Microbiol. 44(2):559–567. doi:10.1590/S1517-83822013000200036
  • Anitha A, Arunkumar D. 2013. Extraction, partial purification and characterization of tannase enzyme from Mucor sp. J Nehru Arts Sci Coll. 1:25–29.
  • Anupama P, Ravindra P. 2001. Studies on production of single cell protein by Aspergillus niger in solid state fermentation of rice bran. Braz Arch Biol Technol. 44(1):79–88. doi:10.1590/S1516-89132001000100011
  • AOAC. 2005. Official methods of analysis of the association of official analytical chemists international. Rockville, MD.
  • Ashok A, Doriya K, Rao DM, Kumar DS. 2017. Design of solid state bioreactor for industrial applications: an overview to conventional bioreactors. Biocatal Agric Biotechnol. 9:11–18. doi:10.1016/j.bcab.2016.10.014
  • Bastos R, Morais DV, Volpi MPC. 2015. Influence of solid moisture and bed height on cultivation of Aspergillus niger from sugarcane bagasse with vinasse. Braz J Chem Eng. 32(2):377–384. doi:10.1590/0104-6632.20150322s00003423
  • Batra A, Saxena RK. 2005. Potential tannase producers from the genera Aspergillus and Penicillium. Process Biochem. 40(5):1553–1557. doi:10.1016/j.procbio.2004.03.003
  • Battestin V, Macedo GA. 2007. Effects of temperature, pH and additives on the activity of tannase produced by Paecilomyces variotii. Electron J Biotechnol. 10(2):0–199. doi:10.2225/vol10-issue2-fulltext-9
  • Belmares R, Contreras-Esquivel JC, Rodrı́guez-Herrera R, Coronel AR, Aguilar CN. 2004. Microbial production of tannase: an enzyme with potential use in food industry. LWT - Food Sci Technol. 37(8):857–864. doi:10.1016/j.lwt.2004.04.002
  • Bhat MH, Jain AK, Fayaz M. 2018. Indian herbal drug industry: challenges and future prospects. In: Ozturk M, Hakeem K, editors. Plant and human health. Vol. 1. Cham: Springer. p. 657–673. doi:10.1007/978-3-319-93997-1_18
  • Bradoo S, Gupta R, Saxena RK. 1997. Parametric optimization and biochemical regulation of extracellular tannase from Aspergillus japonicas. Process Biochem. 32(2):135–139. doi:10.1016/S0032-9592(96)00056-8
  • Broderick AJ. 1982. Greenshields RN, Semi-continuous and continuous production of Aspergillus niger spores in submerged liquid culture. J Gen Microbiol. 128:2639–2645.
  • Cao L, Yu IKM, Cho DW, Wang D, Tsang DCW, Zhang S, Ding S, Wang L, Ok YS. 2019. Microwave-assisted low-temperature hydrothermal treatment of red seaweed (Gracilaria lemaneiformis) for production of levulinic acid and algae hydrochar. Bioresour Technol. 273:251–258.
  • Cavalcanti RMF, Ornela PHO, Jorge JA, Guimarãe SHJ. 2017. Screening, selection and optimization of the culture conditions for tannase production by endophytic fungi isolated from Caatinga. Appl Microbiol Biotechnol. 5:1–9.
  • Chamkha M, Record E, Garcia JL, Asther M, Labat M. 2002. Isolation from a shea cake digester of a tannin–tolerant Escherichia coli strain decarboxylating P–hydroxybenzoic and vanillic acids. Curr Microbiol. 44(5):341–349.
  • Chysirichote T, Pakaweerachat P. 2018. Ultrasonic-assisted extraction of gallic acid and isoquercetin from Aspergillus niger fermented triphala waste. In: MATEC Web of Conferences. Vol. 192, p. 03007.
  • Chysirichote T, Takahashi R, Asami K, Ohtaguchi K. 2013. Effects of starch and protein on glucosamine content in the biomass of Monascus ruber. J Chem Eng Jpn. 46(10):695–698. doi:10.1252/jcej.13we026
  • Chysirichote T. 2018. Cellulase production by Aspergillus niger ATCC 16888 on copra waste from coconut milk process in layered packed-bed bioreactor. Chem Biochem Eng Q. 32(2):267–274. doi:10.15255/CABEQ.2017.1161
  • Davis MA, Askin MC, Hynes MJ. 2005. Amino acid catabolism by an areA-regulated gene encoding an L-amino acid oxidase with broad substrate specificity in Aspergillus nidulans. Appl Environ Microbiol. 71(7):3551–3555. doi:10.1128/AEM.71.7.3551-3555.2005
  • Fang X, Du M, Liu T, Fang Q, Liao Z, Zhong Q, Chen J, Meng X, Zhou S, Wang J. 2019. Changes in the biotransformation of green tea catechins induced by different carbon and nitrogen sources in Aspergillus niger RAF106. Front Microbiol. 10:2521.
  • Fu J, Zhang Y, Lu X. 2015. A Greener process for gallic acid production from tannic acid hydrolysis with hydrochloric acid. Asian J Chem. 27:3328–3332.
  • Guidi P, Falsone G, Wilson C, Cavani L, Ciavatta C, Marzadori C. 2021. New insights into organic carbon stabilization in soil macroaggregates: An in situ study by optical microscopy and SEM-EDS technique. Geoderma. 397:115101. doi:10.1016/j.geoderma.2021.115101
  • Hall LA, Denning DW. 1994. Oxygen requirements of Aspergillus species. J Med Microbiol. 41(5):311–315. doi:10.1099/00222615-41-5-311
  • Hamed MS, Awadalla OA, Metwally SMA. 2015. Optimization of tannase production by Aspergillus flavus. Egypt J Exp Biol Zool. 11:121–127.
  • Hammes W, Schleifer K, Kandler O. 1973. Mode of action of glycine on the biosynthesis of peptidoglycan. J Bacteriol. 116(2):1029–1053. doi:10.1128/jb.116.2.1029-1053.1973
  • Huang W, Ni J, Borthwick AGL. 2005. Biosynthesis of valonia tannin hydrolase and hydrolysis of valonia tannin to ellagic acid by Aspergillus SHL 6. Process Biochem. 40(3–4):1245–1249. doi:10.1016/j.procbio.2004.05.004
  • Ikura Y, Horikoshi K. 1987. Stimulatory effect of certain amino acids on xylanase production by alkalophilic Bacillus sp. Agr Biol Chem. 51(11):3143–3145. doi:10.1080/00021369.1987.10868535
  • Jagetia GC, Baliga MS, Malagi KJ, Kamath MS. 2002. The evaluation of the radioprotective effect of Triphala (an ayurvedic rejuvenating drug) in the mice exposed to gamma-radiation. Phytomedicine. 9(2):99–108.
  • Jain V, Shailendra S. 2007. Standardization of Triphala Churna: spectrophotometric approach. Asian J Chem. 19:1406–1410.
  • Jia X, Qin X, Tian X, Zhao Y, Yang T, Huang J. 2021. Inoculating with the microbial agents to start up the aerobic composting of mushroom residue and wood chips at low temperature. J Environ Chem Eng. 9(4):105294. doi:10.1016/j.jece.2021.105294
  • Kannan S, Burelle I, Orsat V, Raghavan GV. 2020. Characterization of bio-crude liquor and bio-oil produced by hydrothermal carbonization of seafood waste. Waste Biomass Valor. 11(7):3553–3565. doi:10.1007/s12649-019-00704-y
  • Karpe AV, Dhamale VV, Morrison PD, Beale DJ, Harding IH, Palombo EA. 2017. Winery biomass waste degradation by sequential sonication and mixed fungal enzyme treatments. Fungal Genet Biol. 102:22–30. doi:10.1016/j.fgb.2016.08.008
  • Krappmann S, Braus GH. 2005. Nitrogen metabolism of Aspergillus and its role in pathogenicity. Med Mycol. 43(s1):31–40. doi:10.1080/13693780400024271
  • Kudzai CT, Ajay K, Ambika A. 2016. Citric acid production by Aspergillus niger using different substrates. Malaysian J Microbiol. 12:199–204.
  • Kumar DS, Ray S. 2014. Fungal lipase production by solid state fermentation-an overview. Anal Bioanal Chem. 5:230.
  • Kumar S. 2011. Composting of municipal solid waste. Crit Rev Biotechnol. 31(2):112–136. doi:10.3109/07388551.2010.492207
  • Li Y, Park SY, Zhu J. 2011. Solid-state anaerobic digestion for methane production from organic waste. Renewable Sustainable Energy Rev. 15(1):821–826. doi:10.1016/j.rser.2010.07.042
  • Lin XQ, Li F, Pang YQ, Cui H. 2004. Flow injection analysis of gallic acid with inhibited electro–chemiluminescence detection. Anal Bioanal Chem. 378(8):2028–2033. doi:10.1007/s00216-004-2519-z
  • Liu M, Xie H, Ma Y, Li H, Li C, Chen L, Jiang B, Nian B, Guo T, Zhang Z, et al. 2020. High-performance liquid chromatography and metabolomics analysis of tannase metabolism of gallic acid and gallates in tea leaves. J Agric Food Chem. 68(17):4946–4954. doi:10.1021/acs.jafc.0c00513
  • Luedeking R, Piret EL. 1959. A kinetic study of the lactic acid fermentation batch process at controlled pH. Biotechnol Bioeng. 1(4):393–412. doi:10.1002/jbmte.390010406
  • Luo Q, Shunqin Z, You S, Zaihui F, Hongran Z, Shengpei S. 2018. A novel green process for tannic acid hydrolysis using an internally sulfonated hollow polystyrene sphere as catalyst. RSC Adv. 8(31):17151–17158.
  • Makkar HPS, Michael B, Norbert KB, Klaus B. 1993. Gravimetric determination of tannins and their correlations with chemical and protein precipitation methods. J Sci Food Agric. 61(2):161–165. doi:10.1002/jsfa.2740610205
  • MarketWatch. Gallic acid Market. 2021. Focuses at the key worldwide companies to define, describe and analyses the sales volume, value, market share, marketplace competition with top countries data. [accessed 20211 Mar 5]. https://www.marketwatch.com/press-release/gallic-acid-market-2021-focuses-at-the-key-worldwide-companies-to-define-describe-and-analyses-the-sales-volume-value-market-share-marketplace-competition-with-top-countries-data-2021-02-11
  • Meng F, Xing G, Li Y, Song J, Wang Y, Meng Q, Lu J, Zhou Y, Liu Y, Wang D, et al. 2015. The optimization of Marasmius androsaceus submerged fermentation conditions in five-liter fermentor. Saudi J Biol Sci. 23:99–105.
  • Mohapatra PKD, Pati BR, Mondal KC. 2009. Effect of amino acids on tannase biosynthesis by Bacillus licheniformis KBR6. J Microbiol Immunol Infect. 42(2):172–175.
  • Mondal KC, Banerjee R, Pati BR. 2000. Tannase production by Bacillus licheniformis. Biotechnol Lett. 22(9):767–769. doi:10.1023/A:1005638630782
  • Mortier N, Velghe F, Verstichel S. 2016. Organic recycling of agricultural waste today: Composting and anaerobic digestion. In: Poltronieri P, D'Urso OF, editors. Biotransformation of agricultural waste and by-products. New York: Elsevier Inc. p. 69–124.
  • Pakaweerachat P, Chysirichote T. 2016. Preparation of tri–phala waste for gallic acid production by solid state fermentation from Aspergillus niger ATCC 16888. In: The 9th TSAE International Conference, Thai Society of Agricultural Engineering, Thailand.
  • Papagianni M, Wayman F, Mattey M. 2005. Fate and role of ammonium ions during fermentation of citric acid by Aspergillus niger. Appl Environ Microbiol. 71(11):7178–7186. doi:10.1128/AEM.71.11.7178-7186.2005
  • Paranthaman R, Vidyalakshmi R, Murugesh S, Singaravadivel K. 2009. Optimization of various culture media for tannase production in submerged fermentation by Aspergillus flavus. Adv Biol Res. 3:34–39.
  • Patel M, Patel V, Patel R. 2010. Development and validation of improved RP-HPLC method for identification and estimation of ellagic and gallic acid in Triphala churna. Int J Chem Tech Res. 2(3):1486–1493.
  • Pawar V, Lahorkar P, Anantha NDB. 2009. Development of a RP-HPLC method for analysis of Triphala curna and its applicability to test variations in Triphala curna preparations. Indian J Pharm Sci. 71(4):382–386.
  • Petre M, Petre V. 2016. Biotechnology of mushroom growth through submerged cultivation. In: Petre M, editor. Mushroom biotechnology: developments and applications. Kolkata: Academic Press. p. 1–18.
  • Podpora B, Świderski F, Sadowska A, Rakowska R, Wasiak-Zys G. 2016. Spent brewer's yeast extracts as a new component of functional food. Czech J Food Sci. 34( 6):554–563. doi:10.17221/419/2015-CJFS
  • Pompimon W, Wattananon S, Udomputtimekakul P, Baison W, Sombutsiri P, Chuajedton A, Wingwon B. 2020. HPLC determination of the gallic acid and chebulinic acid contents of Phyllanthus emblica Linn., Terminalia bellirica Roxb., Terminalia chebula Retz. and Triphala products from Chae Son district, Lampang, Thailand. Am J Food Technol. 8(3):87–98.
  • Sabu A, Pandey A, Jaafar DM, Szakacs G. 2005. Tamarind seed powder and palm kernel cake: two novel agro residues for the production of tannase under solid state fermentation by Aspergillus niger ATCC 16620. Bioresour Technol. 96(11):1223–1228. doi:10.1016/j.biortech.2004.11.002
  • Saeed S, Aslam S, Mehmood T, Naseer R, Nawaz S, Mujahid H, Firyal S, Anjum AA, Sultan A. 2021. Production of gallic acid under solid-state fermentation by utilizing waste from food processing industries. Waste Biomass Valor. 12:155–163. doi:10.1007/s12649-020-00980-z
  • Saithi S, Borg J, Nopharatana M, Tongta A. 2016. Mathematical modeling of biomass and enzyme production kinetics by Aspergillus niger in solid-state fermentation at various temperatures and moisture contents. J Microb Biochem Technol. 8:123–130.
  • Sandhya T, Lathika KM, Pandey BN, Bhilwade HN, Chaubey RC, Priyadarsini KI, Mishra KP. 2006a. Protection against radiation oxidative damage in mice by Triphala. Mutat Res. 609(1):17–25.
  • Sandhya T, Lathika KM, Pandey BN, Mishra KP. 2006b. Potential of traditional Ayurvedic formulation–Triphala, as a novel anticancer drug. Cancer Lett. 231(2):206–214.
  • Scheible W, Fontes RG, Lauerer AM, Röber BM, Caboche M, Stitt M. 1997. Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism in tobacco. Plant Cell. 9(5):783–798.
  • Selvakumar P, Ashakumary L, Pandey A. 1998. Biosynthesis of glucoamylase from Aspergillus niger by solid-state fermentation using tea waste as the basis of a solid substrate. Bioresour Technol. 65(1–2):83–85. doi:10.1016/S0960-8524(98)00012-1
  • Shahin ZS, Rupa EJ, Aziz S, Begum HA, Al-Reza SM. 2018. Studies on Terminalia bellirica seed for proximal composition, mineral analysis and phytochemical screening. Int J Pharm Life Sci. 4:120–126.
  • Shao Y, Long Y, Wang H, Liu D, Shen D, Chen T. 2019. Hydrochar derived from green waste by microwave hydrothermal carbonization. Renewable Energy. 135:1327–1334. doi:10.1016/j.renene.2018.09.041
  • Sharma S, Bhat TK, Dawra RK. 2000. A spectrophotometric method for assay of tannase using rhodamine. Anal Biochem. 279(1):85–89. doi:10.1006/abio.1999.4405
  • Shojaosadati SA, Babaeipour V. 2002. Citric acid production from apple pomace in multi-layer packed bed solid-state bioreactor. Process Biochem. 37(8):909–914. doi:10.1016/S0032-9592(01)00294-1
  • Srivastava A, Kar R. 2009. Characterization and application of tannase produced by Aspergillus niger ITCC 6514.07 on pomegranate rind. Braz J Microbiol. 40(4):782–789.
  • Stanbury PS, Whitaker A, Hall SJ. 2013. Principles of fermentation technology. 2nd ed. New York: Elsevier.
  • Tarasiuk A, Mosińska P, Fichna J. 2018. Triphala: current applications and new perspectives on the treatment of functional gastrointestinal disorders. Chin Med. 13:39.
  • Tomé D. 2021. Yeast extracts: nutritional and flavoring food ingredients. ACS Food Sci Technol. 1(4):487–494. doi:10.1021/acsfoodscitech
  • Tudzynski B. 2014. Nitrogen regulation of fungal secondary metabolism in fungi. Front Microbiol. 28:656.
  • Wang B, Wang Y, Wei Y, Chen W, Ding G, Zhan Y, Liu Y, Xu T, Xiao J, Li J. 2022. Impact of inoculation and turning for full-scale composting on core bacterial community and their co- occurrence compared by network analysis. Bioresour Technol. 345:126417. doi:10.1016/j.biortech.2021.126417
  • Watanabe A. 1965. Studies on the metabolism of gallic acid by microorganisms. Agric Biol Chem. 29:20–26.
  • Weete J. 2012. Fungal lipid biochemistry: distribution and metabolism. New York: Springer-Verlag Berlin Heidelberg.
  • Whiting K, Carmona LG, Sousa T. 2017. A review of the use of exergy to evaluate the sustainability of fossil fuels and non-fuel mineral depletion. Renewable Sustainable Energy Rev. 76:202–211. doi:10.1016/j.rser.2017.03.059
  • Wu C, Zhang F, Li L, Jiang Z, Ni H, Xiao A. 2018. Novel optimization strategy for tannase production through a modified solid-state fermentation system. Biotechnol Biofuels. 11:92.
  • Yadvika G, Santosh STR, Kohli S, Rana V. 2004. Enhancement of biogas production from solid substrates using different techniques–a review. Bioresour Technol. 95(1):1–10.
  • Yao J, Guo GS, Ren GH, Liu YH. 2014. Production, characterization and applications of tannase. J Mol Catal B Enzym. 101(2):137–147. doi:10.1016/j.molcatb.2013.11.018
  • Yemiş O, Mazza G. 2019. Catalytic performances of various solid catalysts and metal halides for microwave-assisted hydrothermal conversion of xylose, xylan, and straw to furfural. Waste Biomass Valorization. 10(5):1343–1353. doi:10.1007/s12649-017-0144-2
  • Yi Y, Kuipers OP. 2017. Development of an efficient electroporation method for rhizobacterial Bacillus mycoides strains. J Microbiol Methods. 133:82–86. doi:10.1016/j.mimet.2016.12.022
  • Yu XW, Li YQ, Zhou SM, Zheng YY. 2007. Synthesis of propyl gallate by mycelium–bound tannase from Aspergillus niger in organic solvent. World J Microbiol Biotechnol. 23(8):1091–1098. doi:10.1007/s11274-006-9338-7
  • Zamani A. 2015. Introduction to lignocellulose-based products. In: Karimi, K, editor. Lignocellulose-based bioproducts. Cham: Springer, p. 1–36.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.