73
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Enhancing the conversion of waste motor oil into diesel-like fuels using mineral-impregnated biochar catalysts

, , , , , , , ORCID Icon & show all

References

  • Amin AM, Croiset E, Epling W. 2011. Review of methane catalytic cracking for hydrogen production. Int J Hydrogen Energy. 36(4):2904–2935. doi:10.1016/j.ijhydene.2010.11.035.
  • Chi NTL, Anto S, Ahamed TS, Kumar SS, Shanmugam S, Samuel MS, Mathimani T, Brindhadevi K, Pugazhendhi A. 2021. A review on biochar production techniques and biochar based catalyst for biofuel production from algae. Fuel. 287:119411. doi:10.1016/j.fuel.2020.119411.
  • Dehkhoda AM, West AH, Ellis N. 2010. Biochar based solid acid catalyst for biodiesel production. Appl Catal, A. 382(2):197–204. doi:10.1016/j.apcata.2010.04.051.
  • Demirbas A. 2008. Gasoline-like fuel from waste engine oil via catalytic pyrolysis. Energy Source A. 30(16):1433–1441. doi:10.1080/15567030701258469.
  • Hamdan M, Halawy L, Abdel Karim Aramouni N, Ahmad MN, Zeaiter J. 2022. Analytical review of the catalytic cracking of methane. Fuel. 324:124455. doi:10.1016/j.fuel.2022.124455.
  • Hazman M, Fawzy S, Hamdy A, Khaled A, Mahmoud A, Khalid E, Ibrahim HM, Gamal M, Abo Elyazeed N, Saber N, et al. 2023. Enhancing rice resilience to drought by applying biochar–compost mixture in low-fertile sandy soil. Beni-Suef Univ J Basic Appl Sci. 12(1):74. doi:10.1186/s43088-023-00411-7.
  • Juiña E, Taco-Vasquez S, Vizuete K, Debut A, Murillo HA, Ponce S. 2023. Evaluating the properties of a novel diesel-like fuel produced by biochar-assisted catalytic cracking of waste motor oil. Biofuels. 1–8. doi:10.1080/17597269.2023.2257961.
  • Kim Y, Lee H, Yang S, Lee J, Kim H, Hwang S, Jeon SW, Kim DH. 2021. Ultrafine Pd nanoparticles on amine-functionalized carbon nanotubes for hydrogen production from formic acid. J Catal. 404:324–333. doi:10.1016/j.jcat.2021.10.007.
  • Lee J, Kim KH, Kwon EE. 2017. Biochar as a catalyst. Renew Sustain Energy Rev. 77:70–79. doi:10.1016/j.rser.2017.04.002.
  • Maceiras R, Alfonsín V, Morales FJ. 2017. Recycling of waste engine oil for diesel production. Waste Manag. 60:351–356. doi:10.1016/J.WASMAN.2016.08.009.
  • Mehrabadi BAT, Eskandari S, Khan U, White RD, Regalbuto JR. 2017. A review of preparation methods for supported metal catalysts. Adv Catal. 61:1–35. doi:10.1016/BS.ACAT.2017.10.001.
  • Mishra A, Siddiqi H, Kumari U, Behera ID, Mukherjee S, Meikap BC. 2021. Pyrolysis of waste lubricating oil/waste motor oil to generate high-grade fuel oil: a comprehensive review. Renew Sustain Energy Rev. 150:111446. doi:10.1016/j.rser.2021.111446.
  • Nguyen HKD, Pham VV, Do HT. 2016. Preparation of Ni/biochar catalyst for hydrotreating of bio-oil from microalgae biomass. Catal Lett. 146(11):2381–2391. doi:10.1007/S10562-016-1873-8/TABLES/5.
  • Nishiwaki J, Kawabe Y, Komai T, Zhang M. 2018. Decomposition of gasoline hydrocarbons by natural microorganisms in Japanese soils. Geosciences. 8(2):35. doi:10.3390/geosciences8020035.
  • Rodríguez Lamar Y, Noboa J, Torres Miranda AS, Almeida Streitwieser D. 2021. Conversion of PP, HDPE and LDPE plastics into liquid fuels and chemical precursors by thermal cracking. J Polym Environ. 29(12):3842–3853. doi:10.1007/S10924-021-02150-1/FIGURES/9.
  • Rodriguez Y, Guerra R, Vizuete K, Debut A, Streitwieser DA, Mora JR, Ponce S. 2023. Kinetic study of the catalytic cracking of waste motor oil using biomass-derived heterogeneous catalysts. Waste Manag. 167:46–54. doi:10.1016/J.WASMAN.2023.05.027.
  • Rubeena KK, Hari Prasad Reddy P, Laiju AR, Nidheesh PV. 2018. Iron impregnated biochars as heterogeneous Fenton catalyst for the degradation of acid red 1 dye. J Environ Manage. 226:320–328. doi:10.1016/J.JENVMAN.2018.08.055.
  • Sakhiya AK, Anand A, Kaushal P. 2020. Production, activation, and applications of biochar in recent times. Biochar. 2(3):253–285. doi:10.1007/s42773-020-00047-1.
  • Sarkar S, Datta D, Deepak KS, Mondal BK, Das B. 2023. Comprehensive investigation of various re-refining technologies of used lubricating oil: a review. J Mater Cycles Waste Manag. 25(4):1935–1965. doi:10.1007/s10163-023-01685-w.
  • Shen Y, Areeprasert C, Prabowo B, Takahashi F, Yoshikawa K. 2014. Metal nickel nanoparticles in situ generated in rice husk char for catalytic reformation of tar and syngas from biomass pyrolytic gasification. RSC Adv. 4(77):40651–40664. doi:10.1039/C4RA07760A.
  • Speight JG. 2015. Fouling during catalytic cracking. Fouling in refineries. Amsterdam, Netherlands: p. 271–302. 10.1016/B978-0-12-800777-8.00011-5 doi:ElsevierScience.
  • Tamunaidu P, Bhatia S. 2007. Catalytic cracking of palm oil for the production of biofuels: optimization studies. Bioresour Technol. 98(18):3593–3601. doi:10.1016/J.BIORTECH.2006.11.028.
  • Tekin K, Ucar S, Karagöz S. 2019. Influence of co-pyrolysis of waste tetra pak with waste motor oil on product distribution and properties for fuel application. Energy Fuels. 33(11):11101–11112. doi:10.1021/ACS.ENERGYFUELS.9B02634/ASSET/IMAGES/MEDIUM/EF9B02634_0007.GIF.
  • Vargas DC, Alvarez MB, Hidrobo Portilla A, Van Geem KM, Almeida Streitwieser D. 2016. Kinetic study of the thermal and catalytic cracking of waste motor oil to diesel-like fuels. Energy Fuels. 30(11):9712–9720. doi:10.1021/acs.energyfuels.6b01868.
  • Xie T, Reddy KR, Wang C, Yargicoglu E, Spokas K. 2015. Characteristics and applications of biochar for environmental remediation: a review. Critic Rev Environ Sci Technol. 45(9):939–969. doi:10.1080/10643389.2014.924180.
  • Xiong X, Yu IKM, Cao L, Tsang DCW, Zhang S, Ok YS. 2017. A review of biochar-based catalysts for chemical synthesis, biofuel production, and pollution control. Bioresour Technol. 246:254–270. doi:10.1016/J.BIORTECH.2017.06.163.
  • Zaher F, Gad MS, Aly SM, Hamed SF, Abo-Elwafa GA, Zahran HA. 2017. Catalytic cracking of vegetable oils for producing biofuel. Egypt J Chem. 60(2):291–300. doi:10.21608/ejchem.2017.2967.
  • Zerdane Y, Largeau JF, Akkouche N, Hachemi M, Tazerout M. 2023. Catalytic effects of eggshell ash on the conversion of used engine oil to fuel by pyrolysis. Chem Eng Commun. 210(7):1195–1206. doi:10.1080/00986445.2022.2067749.
  • Zhang J, Wu Z, Wu Y, Liu X, Li X, Zhang Y, Xia H, Wang F. 2022. Catalytic cracking of fatty acid methyl esters for the production of green aromatics using Zn-modified HZSM-5 catalysts. Energy Fuels. 36(13):6922–6938. doi:10.1021/acs.energyfuels.2c00697.
  • Zhou X, Zhu Y, Niu Q, Zeng G, Lai C, Liu S, Huang D, Qin L, Liu X, Li B, et al. 2021. New notion of biochar: a review on the mechanism of biochar applications in advanced oxidation processes. Chem Eng J. 416:129027. doi:10.1016/j.cej.2021.129027.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.