8
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Review on ultrasound-enhanced activation of persulfate/peroxymonosulfate in hybrid advanced oxidation technologies

, , &

References

  • Adewuyi YG. 2001. Sonochemistry: environmental science and engineering applications. Ind Eng Chem Res. 40(22):4681–4715. doi:10.1021/ie010096l.
  • Ahmad M, Ahmed E, Hong ZL, Ahmed W, Elhissi A, Khalid NR. 2014. Photocatalytic, sonocatalytic, and sonophotocatalytic degradation of Rhodamine B using ZnO/CNTs compositesphotocatalysts. Ultrason Sonochem. 21(2):761–773. doi:10.1016/j.ultsonch.2013.08.014.
  • Anandan S, Ponnusamy VK, Ashokkumar M. 2020. A review on hybrid techniques for the degradation of organic pollutants in aqueous environment. Ultrason Sonochem. 67:105130. doi:10.1016/j.ultsonch.2020.105130.
  • Anipsitakis GP, Dionysiou DD. 2003. Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt. Environ Sci Technol. 37(20):4790–4797. doi:10.1021/es0263792.
  • Anipsitakis GP, Dionysiou DD. 2004. Radical generation by the interaction of transition metals with common oxidants. Environ Sci Technol. 38(13):3705–3712. doi:10.1021/es035121o.
  • Asli SA, Taghizadeh M. 2020. Sonophotocatalytic degradation of pollutants by ZnO‐based catalysts: a review. Chem Select. 5(43):13720–13731. doi:10.1002/slct.202003612.
  • Ayare SD, Gogate PR. 2020. Sonochemical, photocatalytic and sonophotocatalytic oxidation of flonicamid pesticide solution using different catalysts. Chem Eng Process. 154:108040. doi:10.1016/j.cep.2020.108040.
  • Babuponnusami A, Muthukumar K. 2014. A review on Fenton and improvements to the Fenton process for wastewater treatment. J Environ Chem Eng. 2(1):557–572. doi:10.1016/j.jece.2013.10.011.
  • Bacardit J, García-Molina V, Bayarri B, Giménez J, Chamarro E, Sans C, Esplugas S. 2007. Coupled photochemical-biological system to treat biorecalcitrant wastewater. Water Sci Technol. 55(12):95–100. doi:10.2166/wst.2007.385.
  • Bahnemann D. 2004. Photocatalytic water treatment: solar energy applications. Sol Energy. 77(5):445–459. doi:10.1016/j.solener.2004.03.031.
  • Bahrami H, Eslami A, Nabizadeh R, Mohseni-Bandpi A, Asadi A, Sillanpää M. 2018. Degradation of trichloroethylene by sonophotolytic-activated persulfate processes: optimization using response surface methodology. J Clean Prod. 198:1210–1218. doi:10.1016/j.jclepro.2018.07.100.
  • Barzegar G, Jorfi S, Zarezade V, Khatebasreh M, Mehdipour F, Ghanbari F. 2018. 4-Chlorophenol degradation using ultrasound/peroxymonosulfate/nanoscale zero valent iron: reusability, identification of degradation intermediates and potential application for real wastewater. Chemosphere. 201:370–379. doi:10.1016/j.chemosphere.2018.02.143.
  • Bhanvase BA, Pinjari DV, Gogate PR, Sonawane SH, Pandit AB. 2011. Process intensification of encapsulation of functionalized CaCO3 nanoparticles using ultrasound assisted emulsion polymerization. Chem Eng Process: Process Intensif. 50(11-12):1160–1168. doi:10.1016/j.cep.2011.09.002.
  • Bhanvase BA, Pinjari DV, Sonawane SH, Gogate PR, Pandit AB. 2012. Analysis of semi-batch emulsion polymerization: role of ultrasound and initiator. Ultrason Sonochem. 19(1):97–103. doi:10.1016/j.ultsonch.2011.05.016.
  • Bhanvase BA, Shende TP, Sonawane SH. 2017. A review on graphene–TiO2 and doped graphene–TiO2 nanocomposite photocatalyst for water and wastewater treatment. Environ Technol Rev. 6(1):1–14. doi:10.1080/21622515.2016.1264489.
  • Bhanvase BA, Sonawane SH. 2014. Ultrasound assisted in situ emulsion polymerization for polymer nanocomposite: a review. Chem. Eng. Process. 85:86–107. doi:10.1016/j.cej.2020.127487.
  • Bhargava N, Mor RS, Kumar K, Sharanagat VS. 2021. Advances in application of ultrasound in food processing: a review. Ultrason Sonochem. 70:105293. doi:10.1016/j.ultsonch.2020.105293.
  • Bhatia V, Malekshoar G, Dhir A, Ray AK. 2017. Enhanced photocatalytic degradation of atenolol using graphene TiO2 composite. J Photochem Photobiol A: Chem. 332:182–187. doi:10.1016/j.jphotochem.2016.08.029.
  • Bhattacharya A. 2006. Remediation of pesticide‐polluted waters through membranes. Sep Purif Rev. 35(1):1–38. doi:10.1080/15422110500536151.
  • Bouzayani B, Rosales E, Pazos M, Elaoud SC, Sanromá MA. 2019. Homogeneous and heterogeneous peroxymonosulfate activation by transition metals for the degradation of industrial leather dye. J Clean Prod. 228:222–230. doi:10.1016/j.jclepro.2019.04.217.
  • Bruce DA, Nareddy A. 2006. Sonochemical reaction engineering. In: Lee S, editor. Encyclopedia of chemical processing. Boca Raton: CRC Press. p. 2811–2823.
  • Buxton GV, Greenstock CL, Helman WP, Ross AB. 1988. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅ OH/⋅ O − in aqueous solution). J Phys Chem Ref Data. 17(2):513–886. doi:10.1063/1.555805.
  • Cai C, Zhang H, Zhong X, Hou L. 2015. Ultrasound enhanced heterogeneous activation of peroxymonosulfate by a bimetallic Fe–Co/SBA-15 catalyst for the degradation of Orange II in water. J Hazard Mater. 283:70–79. doi:10.1016/j.jhazmat.2014.08.053.
  • Carp O, Huisman CL, Reller A. 2004. Photoinduced reactivity of titanium dioxide. Prog Solid State Chem. 32(1-2):33–177. doi:10.1016/j.progsolidstchem.2004.08.001.
  • Chakma S, Moholkar VS. 2015. Intensification of wastewater treatment using sono-hybrid processes: an overview of mechanistic synergism. Indian Chem Eng. 57(3-4):359–381. doi:10.1080/00194506.2015.1026948.
  • Chakma S, Praneeth S, Moholkar VS. 2017. Mechanistic investigations in sono-hybrid (ultrasound/Fe2+/UVC) techniques of persulfate activation for degradation of Azorubine. Ultrason Sonochem. 38:652–663. doi:10.1016/j.ultsonch.2016.08.015.
  • Chen WS, Su YC. 2012. Removal of dinitrotoluenes in wastewater by sono-activated persulfate. Ultrason Sonochem. 19(4):921–927. doi:10.1016/j.ultsonch.2011.12.012.
  • Chowdhury SM, Lee T, Willmann JK. 2017. Ultrasound-guided drug delivery in cancer. Ultrasonography. 36(3):171–184. doi:10.14366/usg.17021.
  • Chowdhury P, Viraraghavan T. 2009. Sonochemical degradation of chlorinated organic compounds, phenolic compounds and organic dyes–a review. Sci Total Environ. 407(8):2474–2492. doi:10.1016/j.scitotenv.2008.12.031.
  • Crum LA, Mason TJ, Reisse JL, Suslick KS. 1998. Sonochemistry and sonoluminescence. Vol. 524. Berlin: Springer Science & Business Media.
  • Cui C, Jin L, Jiang L, Han Q, Lin K, Lu S, Zhang D, Cao G. 2016. Removal of trace level amounts of twelve sulfonamides from drinking water by UV-activated peroxymonosulfate. Sci Total Environ. 572:244–251. doi:10.1016/j.scitotenv.2016.07.183.
  • de Andrade FV, de Lima GM, Augusti R, Coelho MG, Assis YP, Machado IR. 2014. A new material consisting of TiO2 supported on Nb2O5 as photocatalyst for the degradation of organic contaminants in aqueous medium. J Environ Chem Eng. 2(4):2352–2358. doi:10.1016/j.jece.2014.02.004.
  • Deshmukh SP, Kale DP, Kar S, Shirsath SR, Bhanvase BA, Saharan VK, Sonawane SH. 2020. Ultrasound assisted preparation of rGO/TiO2 nanocomposite for effective photocatalytic degradation of methylene blue under sunlight. Nano-Struct Nano-Objects. 21:100407. doi:10.1016/j.nanoso.2019.100407.
  • Dey A, Gogate PR, Gote YM. 2023. A review on ultrasound assisted synthesis of metal oxide and doped metal oxide nanocatalysts and subsequent application as photocatalyst for dye degradation. Environ Qual Manag. doi:10.1002/tqem.22030.
  • Do Minh T, Ncibi MC, Srivastava V, Thangaraj SK, Jänis J, Sillanpää M. 2019. Gingerbread ingredient-derived carbons-assembled CNT foam for the efficient peroxymonosulfate-mediated degradation of emerging pharmaceutical contaminants. Appl Catal B: Environ. 244:367–384. doi:10.1016/j.apcatb.2018.11.064.
  • Domínguez JR, González T, Correia S, Domínguez EM. 2021. Sonochemical degradation of neonicotinoid pesticides in natural surface waters. Influence of operational and environmental conditions. Environ Res. 197:111021. doi:10.1016/j.envres.2021.111021.
  • Duan X, Sun H, Wang S. 2018. Metal-free carbocatalysis in advanced oxidation reactions. Acc Chem Res. 51(3):678–687. doi:10.1021/acs.accounts.7b00535.
  • Eskandarloo H, Badiei A, Behnajady MA, Ziarani GM. 2016. Ultrasonic-assisted degradation of phenazopyridine with a combination of Sm-doped ZnO nanoparticles and inorganic oxidants. Ultrason Sonochem. 28:169–177. doi:10.1016/j.ultsonch.2015.07.012.
  • Eslami A, Bahrami H, Asadi A, Alinejad A. 2016. Enhanced sonochemical degradation of tetracycline by sulfate radicals. Water Sci Technol. 73(6):1293–1300. doi:10.2166/wst.2015.607.
  • Etacheri V, Di Valentin C, Schneider J, Bahnemann D, Pillai SC. 2015. Visible-light activation of TiO2 photocatalysts: advances in theory and experiments. J Photochem Photobiol C: Photochem Rev. 25:1–29. doi:10.1016/j.jphotochemrev.2015.08.003.
  • Ferkous H, Merouani S, Hamdaoui O, Pétrier C. 2017. Persulfate-enhanced sonochemical degradation of naphthol blue black in water: evidence of sulfate radical formation. Ultrason Sonochem. 34:580–587. doi:10.1016/j.ultsonch.2016.06.027.
  • Flanagan J, Griffith WP, Skapski AC. 1984. The active principle of Caro’s acid, HSO 5–: X-ray crystal structure of KHSO5H2O. J Chem Soc Chem Commun. (23):1574–1575. doi:10.1039/C39840001574.
  • Forouzesh M, Ebadi A, Aghaeinejad-Meybodi A. 2019. Degradation of metronidazole antibiotic in aqueous medium using activated carbon as a persulfate activator. Sep Purif Technol. 210:145–151. doi:10.1016/j.seppur.2018.07.066.
  • Fulzele NN, Bhanvase BA, Pandharipande SL. 2022. Sonochemically prepared rGO/Ag3PO4/CeO2 nanocomposite photocatalyst for effective visible light photocatalytic degradation of methylene dye and its prediction with ANN modeling. Mater Chem Phys. 292:126809. doi:10.1016/j.matchemphys.2022.126809.
  • Gao H, Chen J, Zhang Y, Zhou X. 2016. Sulfate radicals induced degradation of Triclosan in thermally activated persulfate system. J Chem Eng. 306:522–530. doi:10.1016/j.cej.2016.07.080.
  • Gao Y, Wang Q, Ji G, Li A. 2022. Degradation of antibiotic pollutants by persulfate activated with various carbon materials. Chem Eng J. 429:132387. doi:10.1016/j.cej.2021.132387.
  • Gholami P, Khataee A, Soltani RDC, Bhatnagar A. 2019. A review on carbon-based materials for heterogeneous sonocatalysis: fundamentals, properties and applications. Ultrason Sonochem. 58:104681. doi:10.1016/j.ultsonch.2019.104681.
  • Giannakis S, Lin K-YA, Ghanbari F. 2021. A review of the recent advances on the treatment of industrial wastewaters by sulfate radical-based advanced oxidation processes (SR-AOPs). Chem Eng J. 406:127083. doi:10.1016/j.cej.2020.127083.
  • Graça CA, de Velosa AC, Teixeira ACS. 2017. Amicarbazone degradation by UVA-activated persulfate in the presence of hydrogen peroxide or Fe2+. Catal Today. 280:80–85. doi:10.1016/j.cattod.2016.06.044.
  • Guerra-Rodríguez S, Rodríguez E, Singh DN, Rodríguez-Chueca J. 2018. Assessment of sulfate radical-based advanced oxidation processes for water and wastewater treatment: a review. Water. 10(12):1828. doi:10.3390/w10121828.
  • He J, Xiao Y, Tang J, Chen H, Sun H. 2019. Persulfate activation with sawdust biochar in aqueous solution by enhanced electron donor-transfer effect. Sci Total Environ. 690:768–777. doi:10.1016/j.scitotenv.2019.07.043.
  • Henglein A, Gutierrez M. 1988. Sonolysis of polymers in aqueous solution. New observations on pyrolysis and mechanical degradation. J Phys Chem. 92(13):3705–3707. doi:10.1021/j100324a005.
  • Hoffmann MR, Hua I, Höchemer R. 1996. Application of ultrasonic irradiation for the degradation of chemical contaminants in water. Ultrason Sonochem. 3(3):S163–S172. doi:10.1016/S1350-4177(96)00022-3.
  • Honarmandrad Z, Sun X, Wang Z, Naushad M, Boczkaj G. 2023. Activated persulfate and peroxymonosulfate based advanced oxidation processes (AOPs) for antibiotics degradation–A review. Water Resour Ind. 29:100194. doi:10.1016/j.wri.2022.100194.
  • Hori H, Nagano Y, Murayama M, Koike K, Kutsuna S. 2012. Efficient decomposition of perfluoroether carboxylic acids in water with a combination of persulfate oxidant and ultrasonic irradiation. J Fluor Chem. 141:5–10. doi:10.1016/j.jfluchem.2012.05.012.
  • Hou L, Zhang H, Xue X. 2012. Ultrasound enhanced heterogeneous activation of peroxydisulfate by magnetite catalyst for the degradation of tetracycline in water. Sep Purif Technol. 84:147–152. doi:10.1016/j.seppur.2011.06.023.
  • Hu ZT, Liu J, Yan X, Oh WD, Lim TT. 2015. Low-temperature synthesis of graphene/Bi2Fe4O9 composite for synergistic adsorption-photocatalytic degradation of hydrophobic pollutant under solar irradiation. Chem Eng J. 262:1022–1032. doi:10.1016/j.cej.2014.10.037.
  • Hu P, Long M. 2016. Cobalt-catalyzed sulfate radical-based advanced oxidation: a review on heterogeneous catalysts and applications. Appl Catal B: Environ. 181:103–117. doi:10.1016/j.apcatb.2015.07.024.
  • Huang X, An D, Song J, Gao W, Shen Y. 2017. Persulfate/electrochemical/FeCl2 system for the degradation of phenol adsorbed on granular activated carbon and adsorbent regeneration. J CleanProd. 165:637–644. doi:10.1016/j.jclepro.2017.07.171.
  • Huang W, Xiao S, Zhong H, Yan M, Yang X. 2021. Activation of persulfates by carbonaceous materials: a review. Chem Eng J. 418:129297. doi:10.1016/j.cej.2021.129297.
  • Hung HM, Ling FH, Hoffmann MR. 2000. Kinetics and mechanism of the enhanced reductive degradation of nitrobenzene by elemental iron in the presence of ultrasound. Environ Sci Technol. 34(9):1758–1763. doi:10.1021/es990385p.
  • Hussain MN, Jordens J, John JJ, Braeken L, Van Gerven T. 2019. Enhancing pharmaceutical crystallization in a flow crystallizer with Ultrasound: anti-solvent crystallization. Ultrason Sonochem. 59:104743. doi:10.1016/j.ultsonch.2019.104743.
  • Indrawirawan S, Sun H, Duan X, Wang S. 2015. Low temperature combustion synthesis of nitrogen-doped graphene for metal-free catalytic oxidation. J Mater Chem A. 3(7):3432–3440. doi:10.1039/C4TA05940A.
  • Jelic A, Michael I, Achilleos A, Hapeshi E, Lambropoulou D, Perez S, Petrovic M, Fatta-Kassinos D, Barcelo D. 2013. Transformation products and reaction pathways of carbamazepine during photocatalytic and sonophotocatalytic treatment. J Hazard Mater. 263 Pt 1:177–186. doi:10.1016/j.jhazmat.2013.07.068.
  • Joseph CG, Puma GL, Bono A, Krishnaiah D. 2009. Sonophotocatalysis in advanced oxidation process: a short review. Ultrason Sonochem. 16(5):583–589. doi:10.1016/j.ultsonch.2009.02.002.
  • Kale DP, Deshmukh SP, Shirsath SR, Bhanvase BA. 2020. Sonochemical preparation of multifunctional rGO-ZnS-TiO2 ternary nanocomposite and its application for CV dye removal. Optik. 208:164532. doi:10.1016/j.ijleo.2020.164532.
  • Kandasamy K, Tharmalingam K, Velusamy S. 2017. Treatment of tannery effluent using sono catalytic reactor. J Water Process Eng. 15:72–77. doi:10.1016/j.jwpe.2016.09.001.
  • Karim AV, Shriwastav A. 2021. Degradation of amoxicillin with sono, photo, and sonophotocatalytic oxidation under low-frequency ultrasound and visible light. Environ Res. 200:111515. doi:10.1016/j.envres.2021.111515.
  • Karnjkar YS, Dinde RM, Dinde NM, Bawankar KN, Hinge SP, Mohod AV, Gogate PR. 2015. Degradation of magenta dye using different approaches based on ultrasonic and ultraviolet irradiations: comparison of effectiveness and effect of additives for intensification. Ultrason Sonochem. 27:117–124. doi:10.1016/j.ultsonch.2015.05.011.
  • Kodarkar NM, Deosarkar MP, Bhanvase BA. 2021. Ultrasound assisted one step in-situ preparation and characterization of rGO-WO3 nanocomposite for degradation of organic dyes. Chem Eng Process. 163:108367. doi:10.1016/j.cep.2021.108367.
  • Kolthoff IM, Miller IK. 1951. The chemistry of persulfate. I. The kinetics and mechanism of the decomposition of the persulfate ion in aqueous medium1. J Am Chem Soc. 73(7):3055–3059. doi:10.1021/ja01151a024.
  • Kotronarou A, Mills G, Hoffmann MR. 1991. Ultrasonic irradiation of p-nitrophenol in aqueous solution. J Phys Chem. 95(9):3630–3638. doi:10.1021/j100162a037.
  • Kumar R, Barakat MA, Al-Mur BA, Alseroury FA, Eniola JO. 2020. Photocatalytic degradation of cefoxitin sodium antibiotic using novel BN/CdAl2O4 composite. J Clean Prod. 246:119076. doi:10.1016/j.jclepro.2019.119076.
  • Kumar MS, Sonawan SH, Bhanvase BA, Bethi B. 2018. Treatment of ternary dye wastewater by hydrodynamic cavitation combined with other advanced oxidation processes (AOP’s). J Water Process Eng. 23:250–256. doi:10.1016/j.jwpe.2018.04.004.
  • Kunde GB, Sehgal B. 2021. Application of sol-gel assisted ultrasound-induced atomization in the mesostructuring of nickel aluminate UF membranes. Microporous Mesoporous Mater. 325:111299. doi:10.1016/j.micromeso.2021.111299.
  • Kurian M. 2021. Advanced oxidation processes and nanomaterials-a review. Clean Eng Technol. 2:100090. doi:10.1016/j.clet.2021.100090.
  • Kurukutla AB, Kumar PSS, Anandan S, Sivasankar T. 2015. Sonochemical degradation of rhodamine b using oxidants, hydrogen peroxide/peroxydisulfate/peroxymonosulfate, with Fe2+ ion: proposed pathway and kinetics. Environ Eng Sci. 32(2):129–140. doi:10.1089/ees.2014.0328.
  • Kusic H, Peternel I, Ukic S, Koprivanac N, Bolanca T, Papic S, Bozic AL. 2011. Modeling of iron activated persulfate oxidation treating reactive azo dye in water matrix. Chem. Eng. J. 172(1):109–121. doi:10.1016/j.cej.2011.05.076.
  • Lee Y, Lee S, Cui M, Ren Y, Park B, Ma J, Han Z, Khim J. 2021. Activation of peroxodisulfate and peroxymonosulfate by ultrasound with different frequencies: impact on ibuprofen removal efficient, cost estimation and energy analysis. Chem. Eng. J. 413:127487. doi:10.1016/j.cej.2020.127487.
  • Liang CJ, Bruell CJ, Marley MC, Sperry KL. 2003. Thermally activated persulfate oxidation of trichloroethylene (TCE) and 1, 1, 1-trichloroethane (TCA) in aqueous systems and soil slurries. Soil Sediment Contam. 12(2):207–228. doi:10.1080/713610970.
  • Liang P, Zhang C, Duan X, Sun H, Liu S, Tade MO, Wang S. 2017. An insight into metal organic framework derived N-doped graphene for the oxidative degradation of persistent contaminants: formation mechanism and generation of singlet oxygen from peroxymonosulfate. Environ Sci: Nano. 4(2):315–324. doi:10.1039/C6EN00633G.
  • Liu L, Lin S, Zhang W, Farooq U, Shen G, Hu S. 2018. Kinetic and mechanistic investigations of the degradation of sulfachloropyridazine in heat-activated persulfate oxidation process. Chem Eng J. 346:515–524. doi:10.1016/j.cej.2018.04.068.
  • Liu F, Yi P, Wang X, Gao H, Zhang H. 2018. Degradation of acid orange 7 by an ultrasound/ZnO-GAC/persulfate process. Sep Purif Technol. 194:181–187. doi:10.1016/j.seppur.2017.10.072.
  • Liu J, Zhou J, Ding Z, Zhao Z, Xu X, Fang Z. 2017. Ultrasound irritation enhanced heterogeneous activation of peroxymonosulfate with Fe3O4 for degradation of azo dye. Ultrason Sonochem. 34:953–959. doi:10.1016/j.ultsonch.2016.08.005.
  • Lops C, Ancona A, Di Cesare K, Dumontel B, Garino N, Canavese G, Hérnandez S, Cauda V. 2019. Sonophotocatalytic degradation mechanisms of Rhodamine B dye via radicals generation by micro-and nano-particles of ZnO. Appl Catal B. 243:629–640. doi:10.1016/j.apcatb.2018.10.078.
  • Lu X, Qiu W, Peng J, Xu H, Wang D, Cao Y, Zhang W, Ma J. 2021. A review on additives-assisted ultrasound for organic pollutants degradation. J Hazard Mater. 403:123915. doi:10.1016/j.jhazmat.2020.123915.
  • Lu Y, Xu W, Nie H, Zhang Y, Deng N, Zhang J. 2019. Mechanism and kinetic analysis of degradation of atrazine by US/PMS. IJERPH. 16(10):1781. doi:10.3390/ijerph16101781.
  • Ma Q, Zhang X, Guo R, Zhang H, Cheng Q, Xie M, Cheng X. 2019. Persulfate activation by magnetic γ-Fe2O3/Mn3O4 nanocomposites for degradation of organic pollutants. Sep Purif Technol. 210:335–342. doi:10.1016/j.seppur.2018.06.060.
  • Madhavan J, Kumar PSS, Anandan S, Zhou M, Grieser F, Ashokkumar M. 2010. Ultrasound assisted photocatalytic degradation of diclofenac in an aqueous environment. Chemosphere. 80(7):747–752. doi:10.1016/j.chemosphere.2010.05.018.
  • Madhavan J, Theerthagiri J, Balaji D, Sunitha S, Choi, MY, Ashokkumar, M. 2019. Hybrid advanced oxidation processes involving ultrasound: an overview. Molecules. 24(18):3341. doi:10.3390/molecules24183341.
  • Magioglou E, Frontistis Z, Vakros J, Manariotis ID, Mantzavinos D. 2019. Activation of persulfate by biochars from valorized olive stones for the degradation of sulfamethoxazole. Catalysts. 9(5):419. doi:10.3390/catal9050419.
  • Mahamuni NN, Adewuyi YG. 2010. Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: a review with emphasis on cost estimation. Ultrason Sonochem. 17(6):990–1003. doi:10.1016/j.ultsonch.2009.09.005.
  • Mahdi-Ahmed M, Chiron S. 2014. Ciprofloxacin oxidation by UV-C activated peroxymonosulfate in wastewater. J Hazard Mater. 265:41–46. doi:10.1016/j.jhazmat.2013.11.034.
  • Makino K, Mossoba MM, Riesz P. 1982. Chemical effects of ultrasound on aqueous solutions. Evidence for hydroxyl and hydrogen free radicals (. cntdot. OH and cntdot. H) by spin trapping. J Am Chem Soc. 104(12):3537–3539. doi:10.1021/ja00376a064.
  • Malakootian M, Ahmadian M, Khatami M. 2020. Activation of ultrasound enhanced persulfate oxidation by biogenic nanosilvers for degradation of 4-nitroaniline. DWT. 174:240–247. doi:10.5004/dwt.2020.24886.
  • Margulis MA, Margulis IM. 2004. Mechanism of sonochemical reactions and sonoluminescence. High Energy Chem. 38(5):285–294. doi:10.1007/978-3-319-23573-8_4.
  • Mason TJ, Bernal VS. 2012. An introduction to sonoelectrochemistry. Power ultrasound in electrochemistry: from versatile laboratory tool to engineering solution. p. 21–44.
  • McKenzie TG, Karimi F, Ashokkumar M, Qiao GG. 2019. Ultrasound and sonochemistry for radical polymerization: sound synthesis. Chemistry. 25(21):5372–5388. doi:10.1002/chem.201803771.
  • Meroni D, Gasparini C, Di Michele A, Ardizzone S, Bianchi CL. 2020. Ultrasound-assisted synthesis of ZnO photocatalysts for gas phase pollutant remediation: role of the synthetic parameters and of promotion with WO3. Ultrason Sonochem. 66:105119. doi:10.1016/j.ultsonch.2020.105119.
  • Miao D, Peng J, Zhou X, Qian L, Wang M, Zhai L, Gao S. 2018. Oxidative degradation of atenolol by heat-activated persulfate: kinetics, degradation pathways and distribution of transformation intermediates. Chemosphere. 207:174–182. doi:10.1016/j.chemosphere.2018.05.068.
  • Milh H, Cabooter D, Dewil R. 2021. Role of process parameters in the degradation of sulfamethoxazole by heat-activated peroxymonosulfate oxidation: radical identification and elucidation of the degradation mechanism. Chem Eng J. 422:130457. doi:10.1016/j.cej.2021.130457.
  • Mohamed MM, Ghanem MA, Khairy M, Naguib E, Alotaibi NH. 2019. Zinc oxide incorporated carbon nanotubes or graphene oxide nanohybrids for enhanced sonophotocatalytic degradation of methylene blue dye. Appl Surf Sci. 487:539–549. doi:10.1016/j.apsusc.2019.05.135.
  • Monteagudo JM, El-Taliawy H, Durán A, Caro G, Bester K. 2018. Sono-activated persulfate oxidation of diclofenac: degradation, kinetics, pathway and contribution of the different radicals involved. J Hazard Mater. 357:457–465. doi:10.1016/j.jhazmat.2018.06.031.
  • Montoya-Rodríguez DM, Serna-Galvis EA, Ferraro F, Torres-Palma RA. 2020. Degradation of the emerging concern pollutant ampicillin in aqueous media by sonochemical advanced oxidation processes-Parameters effect, removal of antimicrobial activity and pollutant treatment in hydrolyzed urine. J Environ Manage. 261:110224. doi:10.1016/j.jenvman.2020.110224.
  • Motlagh PY, Vahid B, Akay S, Kayan B, Yoon Y, Khataee A. 2023. Ultrasonic-assisted photocatalytic degradation of various organic contaminants using ZnO supported on a natural polymer of sporopollenin. Ultrason Sonochem. 98:106486. doi:10.1016/j.ultsonch.2023.106486.
  • Movahedian Attar H, Darvishmotevalli M, Moradnia M. 2020. Degradation of 4-chlorophenol from aqueous solution using ultrasound/persulphate: prediction by RSM. Int J Environ Anal Chem. 102(17):6030–6040. doi:10.1080/03067319.2020.1807527.
  • Mukhopadhyay A, Tripathy BK, Debnath A, Kumar M. 2021. Enhanced persulfate activated sono-catalytic degradation of brilliant green dye by magnetic CaFe2O4 nanoparticles: degradation pathway study, assessment of bio-toxicity and cost analysis. Surf. Interfaces. 26:101412. doi:10.1016/j.surfin.2021.101412.
  • Nasseri S, Mahvi AH, Seyedsalehi M, Yaghmaeian K, Nabizadeh R, Alimohammadi M, Safari GH. 2017. Degradation kinetics of tetracycline in aqueous solutions using peroxydisulfate activated by ultrasound irradiation: effect of radical scavenger and water matrix. J. Mol. Liq. 241:704–714. doi:10.1016/j.molliq.2017.05.137.
  • Neppolian B, Doronila A, Ashokkumar M. 2010. Sonochemical oxidation of arsenic (III) to arsenic (V) using potassium peroxydisulfate as an oxidizing agent. Water Res. 44(12):3687–3695. doi:10.1016/j.watres.2010.04.003.
  • Norzaee S, Taghavi M, Djahed B, Mostafapour FK. 2018. Degradation of Penicillin G by heat-activated persulfate in aqueous solution. J Environ Manage. 215:316–323. doi:10.1016/j.jenvman.2018.03.038.
  • Ocampo-Pérez R, Rivera-Utrilla J, Mota AJ, Sánchez-Polo M, Leyva-Ramos R. 2016. Effect of radical peroxide promoters on the photodegradation of cytarabine antineoplastic in water. J Chem Eng. 284:995–1002. doi:10.1016/j.cej.2015.08.162.
  • Okitsu K, Suzuki T, Takenaka N, Bandow H, Nishimura R, Maeda Y. 2006. Acoustic multibubble cavitation in water: a new aspect of the effect of a rare gas atmosphere on bubble temperature and its relevance to sonochemistry. J Phys Chem B. 110(41):20081–20084. doi:10.1021/jp064598u.
  • Panda D, Manickam S. 2017. Recent advancements in the sonophotocatalysis (SPC) and doped-sonophotocatalysis (DSPC) for the treatment of recalcitrant hazardous organic water pollutants. Ultrason Sonochem. 36:481–496. doi:10.1016/j.ultsonch.2016.12.022.
  • Pang Y, Ruan Y, Feng Y, Diao Z, Shih K, Hou L, Chen D, Kong L. 2019. Ultrasound assisted zero valent iron corrosion for peroxymonosulfate activation for Rhodamine-B degradation. Chemosphere. 228:412–417. doi:10.1016/j.chemosphere.2019.04.164.
  • Patel MA, Bhanvase BA, Sonawane SH. 2013. Production of cerium zinc molybdate nano pigment by innovative ultrasound assisted approach. Ultrason Sonochem. 20(3):906–913. doi:10.1016/j.ultsonch.2012.11.008.
  • Patil MN, Pandit AB. 2007. Cavitation–a novel technique for making stable nano-suspensions. Ultrason Sonochem. 14(5):519–530. doi:10.1016/j.ultsonch.2006.10.007.
  • Pattnaik A, Sahu JN, Poonia AK, Ghosh P. 2023. Current perspective of nano-engineered metal oxide based photocatalysts in advanced oxidation processes for degradation of organic pollutants in wastewater. Chem Eng Res Des. 190:667–686. doi:10.1016/j.cherd.2023.01.014.
  • Pétrier C, Francony A. 1997. Ultrasonic wastewater treatment: incidence of ultrasonic frequency on the rate of phenol and carbon tetrachloride degradation. Ultrason Sonochem. 4(4):295–300. doi:10.1016/S1350-4177(97)00036-9.
  • Pirhashemi M, Habibi-Yangjeh A. 2017. Ultrasonic-assisted preparation of plasmonic ZnO/Ag/Ag2WO4 nanocomposites with high visible-light photocatalytic performance for degradation of organic pollutants. J Colloid Interface Sci. 491:216–229. doi:10.1016/j.jcis.2016.12.044.
  • Potle VD, Shirsath SR, Bhanvase BA, Saharan VK. 2020. Sonochemical preparation of ternary rGO-ZnO-TiO2 nanocomposite photocatalyst for efficient degradation of crystal violet dye. Optik. 208:164555. doi:10.1016/j.ijleo.2020.164555.
  • Rajabi S, Nasiri A, Hashemi M. 2022. Enhanced activation of persulfate by CuCoFe2O4@ MC/AC as a novel nanomagnetic heterogeneous catalyst with ultrasonic for metronidazole degradation. Chemosphere. 286(Pt 3):131872. doi:10.1016/j.chemosphere.2021.131872.
  • Rao YF, Qu L, Yang H, Chu W. 2014. Degradation of carbamazepine by Fe (II)-activated persulfate process. J Hazard Mater. 268:23–32. doi:10.1016/j.jhazmat.2014.01.010.
  • Rastogi A, Al-Abed SR, Dionysiou DD. 2009. Sulfate radical-based ferrous–peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems. Appl Catal B: Environ. 85(3-4):171–179. doi:10.1016/j.apcatb.2008.07.010.
  • Rayaroth MP, Aravind UK, Aravindakumar CT. 2015. Sonochemical degradation of Coomassie Brilliant Blue: effect of frequency, power density, pH, and various additives. Chemosphere. 119:848–855. doi:10.1016/j.chemosphere.2014.08.037.
  • Rayaroth MP, Aravind UK, Aravindakumar CT. 2017. Ultrasound based AOP for emerging pollutants: from degradation to mechanism. Environ Sci Pollut Res Int. 24(7):6261–6269. doi:10.1007/s11356-016-6606-4.
  • Rey A, Hungria AB, Duran-Valle CJ, Faraldos M, Bahamonde A, Casas JA, Rodriguez JJ. 2016. On the optimization of activated carbon-supported iron catalysts in catalytic wet peroxide oxidation process. Appl Catal B: Environ. 181:249–259. doi:10.1016/j.apcatb.2015.07.051.
  • Richards WT, Loomis AL. 1927. The chemical effects of high frequency sound waves I. A preliminary survey. J Am Chem Soc. 49(12):3086–3100. doi:10.1021/ja01411a015.
  • Riesz P, Berdahl D, Christman C. 1985. Free radical generation by ultrasound in aqueous and nonaqueous solutions. Environ Health Perspect. 64:233–252. doi:10.1289/ehp.8564233.
  • Riesz P, Kondo T, Krishna CM. 1990. Sonochemistry of volatile and non-volatile solutes in aqueous solutions: EPR and spin trapping studies. Ultrasonics. 28(5):295–303. doi:10.1016/0041-624X(90)90035-M.
  • Rivera-Utrilla J, Sánchez-Polo M, Ferro-García MÁ, Prados-Joya G, Ocampo-Pérez R. 2013. Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere. 93(7):1268–1287. doi:10.1016/j.chemosphere.2013.07.059.
  • Rodríguez-Chueca J, Moreira SI, Lucas MS, Fernandes JR, Tavares PB, Sampaio A, Peres JA. 2017. Disinfection of simulated and real winery wastewater using sulphate radicals: peroxymonosulphate/transition metal/UV-A LED oxidation. J Clean Prod. 149:805–817. doi:10.1016/j.jclepro.2017.02.135.
  • Roshani B, Karpel Vel Leitner N. 2011. The influence of persulfate addition for the degradation of micropollutants by ionizing radiation. J Chem Eng. 168(2):784–789. doi:10.1016/j.cej.2010.12.023.
  • Sarkar B, Venkateshwarlu N, Rao RN, Bhattacharjee C, Kale V. 2007. Potable water production from pesticide contaminated surface water—a membrane based approach. Desalination. 204(1-3):368–373. doi:10.1016/j.desal.2006.02.041.
  • Satdeve NS, Ugwekar RP, Bhanvase BA. 2019. Ultrasound assisted preparation and characterization of Ag supported on ZnO nanoparticles for visible light degradation of methylene blue dye. J Mol Liq. 291:111313. doi:10.1016/j.molliq.2019.111313.
  • Sathishkumar P, Mangalaraja RV, Anandan S. 2016. Review on the recent improvements in sonochemical and combined sonochemical oxidation processes–A powerful tool for destruction of environmental contaminants. Renew Sustain Energy Rev. 55:426–454. doi:10.1016/j.rser.2015.10.139.
  • Scott T, Zhao H, Deng W, Feng X, Li Y. 2019. Photocatalytic degradation of phenol in water under simulated sunlight by an ultrathin MgO coated Ag/TiO2 nanocomposite. Chemosphere. 216:1–8. doi:10.1016/j.chemosphere.2018.10.083.
  • Segura Y, Martínez F, Melero JA, Molina R, Chand R, Bremner DH. 2012. Enhancement of the advanced Fenton process (Fe0/H2O2) by ultrasound for the mineralization of phenol. Appl Catal B: Environ. 113-114:100–106. doi:10.1016/j.apcatb.2011.11.024.
  • Serpone N, Colarusso P. 1994. Sonochemistry I. Effects of ultrasounds on heterogeneous chemical reactions–a useful tool to generate radicals and to examine reaction mechanisms. Res Chem Intermed. 20(6):635–679. doi:10.1163/156856794X00261.
  • Sharma VK, Feng M. 2019. Water depollution using metal-organic frameworks-catalyzed advanced oxidation processes: a review. J Hazard Mater. 372:3–16. doi:10.1016/j.jhazmat.2017.09.043.
  • Shende TP, Bhanvase BA, Rathod AP, Pinjari DV, Sonawane SH. 2018. Sonochemical synthesis of Graphene-Ce-TiO2 and Graphene-Fe-TiO2 ternary hybrid photocatalyst nanocomposite and its application in degradation of crystal violet dye. Ultrason Sonochem. 41:582–589. doi:10.1016/j.ultsonch.2017.10.024.
  • Shi P, Su R, Zhu S, Zhu M, Li D, Xu S. 2012. Supported cobalt oxide on graphene oxide: highly efficient catalysts for the removal of Orange II from water. J Hazard Mater. 229-230:331–339. doi:10.1016/j.jhazmat.2012.06.007.
  • Shimizu N, Ogino C, Dadjour MF, Murata T. 2007. Sonocatalytic degradation of methylene blue with TiO2 pellets in water. Ultrason. Sonochem. 14(2):184–190. doi:10.1016/j.ultsonch.2006.04.002.
  • Shuchi SB, Suhan MBK, Humayun SB, Haque ME, Islam MS. 2021. Heat-activated potassium persulfate treatment of Sudan Black B dye: degradation kinetic and thermodynamic studies. J Water Process Eng. 39:101690. doi:10.1016/j.jwpe.2020.101690.
  • Sobhani-Nasab A, Behpour M, Rahimi-Nasrabadi M, Ahmadi F, Pourmasoud S, Sedighi F. 2019. Preparation, characterization and investigation of sonophotocatalytic activity of thulium titanate/polyaniline nanocomposites in degradation of dyes. Ultrason Sonochem. 50:46–58. doi:10.1016/j.ultsonch.2018.08.021.
  • Soltani RDC, Jorfi S, Ramezani H, Purfadakari S. 2016. Ultrasonically induced ZnO–biosilicananocomposite for degradation of a textile dye in aqueous phase. Ultrason Sonochem. 28:69–78. doi:10.1016/j.ultsonch.2015.07.002.
  • Song T, Li G, Hu R, Liu Y, Liu H, Gao Y. 2022. Degradation of antibiotics via UV-activated peroxodisulfate or peroxymonosulfate: a review. Catalysts. 12(9):1025. doi:10.3390/catal12091025.
  • Soumia F, Petrier C. 2016. Effect of potassium monopersulfate (oxone) and operating parameters on sonochemical degradation of cationic dye in an aqueous solution. Ultrason Sonochem. 32:343–347. doi:10.1016/j.ultsonch.2016.03.032.
  • Su S, Guo W, Yi C, Leng Y, Ma Z. 2012. Degradation of amoxicillin in aqueous solution using sulphate radicals under ultrasound irradiation. Ultrason Sonochem. 19(3):469–474. doi:10.1016/j.ultsonch.2011.10.005.
  • Surenjan A, Sambandam B, Pradeep T, Philip L. 2017. Synthesis, characterization and performance of visible light active C-TiO2 for pharmaceutical photodegradation. J Environ Chem Eng. 5(1):757–767. doi:10.1016/j.jece.2016.12.044.
  • Suslick KS, Flannigan DJ. 2008. Inside a collapsing bubble: sonoluminescence and the conditions during cavitation. Annu Rev Phys Chem. 59(1):659–683. doi:10.1146/annurev.physchem.59.032607.093739.
  • Teh CY, Wu TY, Juan JC. 2017. An application of ultrasound technology in synthesis of titania-based photocatalyst for degrading pollutant. J Chem Eng. 317:586–612. doi:10.1016/j.cej.2017.01.001.
  • Thanekar P, Panda M, Gogate PR. 2018. Degradation of carbamazepine using hydrodynamic cavitation combined with advanced oxidation processes. Ultrason Sonochem. 40(Pt A):567–576. doi:10.1016/j.ultsonch.2017.08.001.
  • Thangavadivel K, Konagaya M, Okitsu K, Ashokkumar M. 2014. Ultrasound-assisted degradation of methyl orange in a micro reactor. J Environ Chem Eng. 2(3):1841–1845. doi:10.1016/j.jece.2014.08.004.
  • Torres RA, Mosteo R, Pétrier C, Pulgarin C. 2009. Experimental design approach to the optimization of ultrasonic degradation of alachlor and enhancement of treated water biodegradability. Ultrason Sonochem. 16(3):425–430. doi:10.1016/j.ultsonch.2008.08.004.
  • Torres-Palma RA, Serna-Galvis EA. 2018. Advanced oxidation processes for waste water treatment. In Sonolysis. Academic Press. p. 177–213.
  • Tsitonaki A, Petri B, Crimi M, Mosbæk HANS, Siegrist RL, Bjerg PL. 2010. In situ chemical oxidation of contaminated soil and groundwater using persulfate: a review. Crit Rev Environ Sci. 40(1):55–91. doi:10.1080/10643380802039303.
  • Uddin MH, Okitsu K. 2016. Effect of CCl4 or C6F14 on sonochemical degradation of dyes and phenolic compounds in an aqueous solution. J Water Process Eng. 12:66–71. doi:10.1016/j.jwpe.2016.05.001.
  • Ulucan-Altuntas K, Yazici Guvenc S, Can-Güven E, Ilhan F, Varank G. 2022. Degradation of oxytetracycline in aqueous solution by heat-activated peroxydisulfate and peroxymonosulfate oxidation. Environ Sci Pollut Res Int. 29(6):9110–9123. doi:10.1007/s11356-021-16157-7.
  • Vega LP, Soltan J, Peñuela GA. 2019. Sonochemical degradation of triclosan in water in a multifrequency reactor. Environ Sci Pollut Res Int. 26(5):4450–4461. doi:10.1007/s11356-018-1281-2.
  • Vela N, Fenoll J, Garrido I, Pérez-Lucas G, Flores P, Hellín P, Navarro S. 2019. Reclamation of agro-wastewater polluted with pesticide residues using sunlight activated persulfate for agricultural reuse. Sci Total Environ. 660:923–930. doi:10.1016/j.scitotenv.2019.01.060.
  • Villegas-Guzman P, Silva-Agredo J, Florez O, Giraldo-Aguirre AL, Pulgarin C, Torres-Palma RA. 2017. Selecting the best AOP for isoxazolylpenicillins degradation as a function of water characteristics: effects of pH, chemical nature of additives and pollutant concentration. J Environ Manage. 190:72–79. doi:10.1016/j.jenvman.2016.12.056.
  • Villegas-Guzman P, Silva-Agredo J, Giraldo-Aguirre AL, Flórez-Acosta O, Petrier C, Torres-Palma RA. 2015. Enhancement and inhibition effects of water matrices during the sonochemical degradation of the antibiotic dicloxacillin. Ultrason Sonochem. 22:211–219. doi:10.1016/j.ultsonch.2014.07.006.
  • Wang J, Hasaer B, Yang M, Liu R, Hu C, Liu H, Qu J. 2020. Anaerobically-digested sludge disintegration by transition metal ions-activated peroxymonosulfate (PMS): Comparison between Co2+, Cu2+, Fe2+ and Mn2. Sci Total Environ. 713:136530. doi:10.1016/j.scitotenv.2020.136530.
  • Wang J, Jiang Z, Zhang Z, Xie Y, Wang X, Xing Z, Xu R, Zhang X. 2008. Sonocatalytic degradation of acid red B and rhodamine B catalyzed by nano-sized ZnO powder under ultrasonic irradiation. Ultrason Sonochem. 15(5):768–774. doi:10.1016/j.ultsonch.2008.02.002.
  • Wang J, Ma T, Zhang Z, Zhang X, Jiang Y, Zhang G, Zhao G, Zhao H, Zhang P. 2007. Investigation on transition crystal of ordinary rutile TiO2 powder and its sonocatalytic activity. Ultrason Sonochem. 14(2):246–252. doi:10.1016/j.ultsonch.2006.05.003.
  • Wang Q, Rao P, Li G, Dong L, Zhang X, Shao Y, Gao N, Chu W, Xu B, An N, et al. 2020. Degradation of imidacloprid by UV-activated persulfate and peroxymonosulfate processes: kinetics, impact of key factors and degradation pathway. Ecotoxicol Environ Saf. 187:109779. doi:10.1016/j.ecoenv.2019.109779.
  • Wang Y, Tian D, Chu W, Li M, Lu X. 2019. Nanoscaled magnetic CuFe2O4 as an activator of peroxymonosulfate for the degradation of antibiotics norfloxacin. Sep Purif Technol. 212:536–544. doi:10.1016/j.seppur.2018.11.051.
  • Wang J, Wang S. 2018. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chem Eng J. 334:1502–1517. doi:10.1016/j.cej.2017.11.059.
  • Wang J, Wang S. 2019. Preparation, modification and environmental application of biochar: a review. J Clean Prod. 227:1002–1022. doi:10.1016/j.jclepro.2019.04.282.
  • Wang S, Zhou N, Wu S, Zhang Q, Yang Z. 2015. Modeling the oxidation kinetics of sono-activated persulfate’s process on the degradation of humic acid. Ultrason Sonochem. 23:128–134. doi:10.1016/j.ultsonch.2014.10.026.
  • Wei J, Liu Y, Zhu Y, Li J. 2020. Enhanced catalytic degradation of tetracycline antibiotic by persulfate activated with modified sludge bio-hydrochar. Chemosphere. 247:125854. doi:10.1016/j.chemosphere.2020.125854.
  • Wu S, Li H, Li X, He H, Yang C. 2018. Performances and mechanisms of efficient degradation of atrazine using peroxymonosulfate and ferrate as oxidants. Chem Eng J. 353:533–541. doi:10.1016/j.cej.2018.06.133.
  • Xiao R, Luo Z, Wei Z, Luo S, Spinney R, Yang W, Dionysiou DD. 2018. Activation of peroxymonosulfate/persulfate by nanomaterials for sulfate radical-based advanced oxidation technologies. Curr Opin Chem Eng. 19:51–58. doi:10.1016/j.coche.2017.12.005.
  • Yang CW, Hsiao WC, Chang BV. 2016. Biodegradation of sulfonamide antibiotics in sludge. Chemosphere. 150:559–565. doi:10.1016/j.chemosphere.2016.02.064.
  • Yang L, Sostaric JZ, Rathman JF, Weavers LK. 2008. Effect of ultrasound frequency on pulsed sonolytic degradation of octylbenzene sulfonic acid. J Phys Chem B. 112(3):852–858. doi:10.1021/jp077482m.
  • Yang S, Wang P, Yang X, Shan L, Zhang W, Shao X, Niu R. 2010. Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants: persulfate, peroxymonosulfate and hydrogen peroxide. J Hazard Mater. 179(1-3):552–558. doi:10.1016/j.jhazmat.2010.03.039.
  • Yasui K. 1998. Hot-spot model of single-bubble sonoluminescence. J Acoust Soc Am. 103(5_Supplement):2974–2974. doi:10.1121/1.422403.
  • Yin R, Guo W, Wang H, Du J, Zhou X, Wu Q, Zheng H, Chang J, Ren N. 2018. Enhanced peroxymonosulfate activation for sulfamethazine degradation by ultrasound irradiation: performances and mechanisms. Chem Eng J. 335:145–153. doi:10.1016/j.cej.2017.10.063.
  • Yu F, Li Y, Han S, Ma J. 2016. Adsorptive removal of antibiotics from aqueous solution using carbon materials. Chemosphere. 153:365–385. doi:10.1016/j.chemosphere.2016.03.083.
  • Yu J, Tang L, Pang Y, Zeng G, Feng H, Zou J, Wang J, Feng C, Zhu X, Ouyang X, et al. 2020. Hierarchical porous biochar from shrimp shell for persulfate activation: a two-electron transfer path and key impact factors. Appl Catal B: Environ. 260:118160. doi:10.1016/j.apcatb.2019.118160.
  • Zeng L, Li S, Li X, Li J, Fan S, Chen X, Yin Z, Tadé M, Liu S. 2019. Visible-light-driven sonophotocatalysis and peroxymonosulfate activation over 3D urchin-like MoS2/C nanoparticles for accelerating levofloxacin elimination: optimization and kinetic study. Chem Eng J. 378:122039. doi:10.1016/j.cej.2019.122039.
  • Zhang X, Chen Y, Zhang S, Qiu C. 2017. High photocatalytic performance of high concentration Al-doped ZnO nanoparticles. Sep Purif Technol. 172:236–241. doi:10.1016/j.seppur.2016.08.016.
  • Zhang J, Chen M, Zhu L. 2016. Activation of persulfate by Co3O4 nanoparticles for orange G degradation. RSC Adv. 6(1):758–768. doi:10.1039/C5RA22457H.
  • Zhang R, Li Y, Wang Z, Tong Y, Sun P. 2020. Biochar-activated peroxydisulfate as an effective process to eliminate pharmaceutical and metabolite in hydrolyzed urine. Water Res. 177:115809. doi:10.1016/j.watres.2020.115809.
  • Zheng X, Niu X, Zhang D, Lv M, Ye X, Ma J, Lin Z, Fu M. 2022. Metal-based catalysts for persulfate and peroxymonosulfate activation in heterogeneous ways: a review. Chem Eng J. 429:132323. doi:10.1016/j.cej.2021.132323.
  • Zhong Y, Shih K, Diao Z, Song G, Su M, Hou L, Chen D, Kong L. 2021. Peroxymonosulfate activation through LED-induced ZnFe2O4 for levofloxacin degradation. Chem Eng J. 417:129225. doi:10.1016/j.cej.2021.129225.
  • Zhou L, Zhang J, Xing L, Zhang W. 2021. Applications and effects of ultrasound assisted emulsification in the production of food emulsions: a review. Trends Food Sci Technol. 110:493–512. doi:10.1016/j.tifs.2021.02.008.
  • Zhou L, Zhang Y, Ying R, Wang G, Long T, Li J, Lin Y. 2017. Thermoactivated persulfate oxidation of pesticide chlorpyrifos in aquatic system: kinetic and mechanistic investigations. Environ Sci Pollut Res Int. 24(12):11549–11558. doi:10.1007/s11356-017-8672-7.
  • Zou X, Zhou T, Mao J, Wu X. 2014. Synergistic degradation of antibiotic sulfadiazine in a heterogeneous ultrasound-enhanced Fe0/persulfate Fenton-like system. Chem Eng J. 257:36–44. doi:10.1016/j.cej.2014.07.048.
  • Zrinyi N, Pham ALT. 2017. Oxidation of benzoic acid by heat-activated persulfate: effect of temperature on transformation pathway and product distribution. Water Res. 120:43–51. doi:10.1016/j.watres.2017.04.066.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.