0
Views
0
CrossRef citations to date
0
Altmetric
Review Article

A comprehensive review of alumina as an effective filler for enhanced electrochemical properties of solid polymer electrolytes

&

References

  • Abdulkadir BA, Dennis JO, Al-Hadeethi Y, Shukur MFBA, Mkawi EM, Al-Harbi N, Ibnaouf KH, Aldaghri O, Usman F, Abbas Adam A. 2021. Optimization of the electrochemical performance of a composite polymer electrolyte based on PVA-K2CO3-SiO2 composite. Polymers (Basel). 13(1):1–24. doi:10.3390/polym13010092.
  • Abdulkadir BA, Dennis JO, Shukur MFBA, Nasef MME, Usman F. 2021. Study on dielectric properties of gel polymer electrolyte based on PVA-K2CO3 composites. Int J Electrochem Sci. 16(1):150296. doi:10.20964/2021.01.34.
  • Abdullah OG, Salman YAK, Tahir DA, Jamal GM, Ahmed HT, Mohamad AH, Azawy AK. 2021. Effect of ZnO nanoparticle content on the structural and ionic transport parameters of polyvinyl alcohol based proton-conducting polymer electrolyte membranes. Membranes (Basel). 11(3):163. doi:10.3390/membranes11030163.
  • Abdulkadir BA, Ojur Dennis J, Abdullahi Adam A, Mudassir Hassan Y, Asyiqin Shamsuri N, Shukur MF. 2022. Preparation and characterization of solid biopolymer electrolytes based on polyvinyl alcohol/cellulose acetate blend doped with potassium carbonate (K2CO3) salt. Electroanal Chem. 919:116539.: 10.1016/j.jelechem.2022.116539.
  • Adam AA, Soleimani H, Shukur MFBA, Dennis JO, Abdulkadir BA, Hassan YM, Yusuf JY, Shamsuri NAB. 2022. A new approach to understanding the interaction effect of salt and plasticizer on solid polymer electrolytes using statistical model and artificial intelligence algorithm. J Non Cryst Solids. 587:121597. doi:10.1016/j.jnoncrysol.2022.121597.
  • Ali Z, Yaqoob S, Yu J, D'Amore A. 2024. Critical review on the characterization, preparation, and enhanced mechanical, thermal, and electrical properties of carbon nanotubes and their hybrid filler polymer composites for various applications. Compos Part C Open Access. 13(1):100434. doi:10.1016/j.jcomc.2024.100434.
  • Ao X, Wang X, Tan J, Zhang S, Su C, Dong L, Tang M, Wang Z, Tian B, Wang H. 2021. Nanocomposite with fast Li + conducting percolation network: solid polymer electrolyte with Li+ non-conducting filler. Nano Energy. 79:105475. doi:10.1016/j.nanoen.2020.105475.
  • Aziz SB, Abdullah OG, Hussein SA, Ahmed HM. 2017. Effect of PVA blending on structural and ion transport properties of CS: agNt-based polymer electrolyte membrane. Polymers (Basel). 9(11):622. doi:10.3390/polym9110622.
  • Aziz SB, Abdulwahid RT, Sadiq NM, Abdullah RM, Tahir DA, Jameel DA, Hamad SM, Abdullah OG. 2023. Design of biodegradable polymer blend electrolytes with decoupled ion motion for EDLC device Application: electrical and electrochemical properties. Results Phys. 51:106692. doi:10.1016/j.rinp.2023.106692.
  • Aziz SB, Abidin ZHZ. 2015. Ion-transport study in nanocomposite solid polymer electrolytes based on chitosan: electrical and dielectric analysis. J Appl Polym Sci. 132(15):1–10. doi:10.1002/app.41774.
  • Aziz SB, Brza MA, Mohamed PA, Kadir MFZ, Hamsan MH, Abdulwahid RT, Woo HJ. 2019. Increase of metallic silver nanoparticles in Chitosan: agNt based polymer electrolytes incorporated with alumina filler. Results Phys. 13:102326. doi:10.1016/j.rinp.2019.102326.
  • Aziz SB, Woo TJ, Kadir MFZ, Ahmed HM. 2018. A conceptual review on polymer electrolytes and ion transport models. J Sci Adv Mater Dev. 3(1):1–17. doi:10.1016/j.jsamd.2018.01.002.
  • Baek UC, Moon J, Lee JY, Song E, Cho S, Chae Y, Park JT. 2021. Preparation of Co9S8 nanostructure with double comb copolymer derived mesoporous carbon for solar energy conversion catalyst. Electroanal Chem. 895:115384. doi:10.1016/j.jelechem.2021.115384.
  • Balakrishnan NTM, Das A, Joyner JD, Jabeen Fatima MJ, Raphael LR, Pullanchiyodan A, Raghavan P. 2023. Quest for high-performance gel polymer electrolyte by enhancing the miscibility of the bi-polymer blend for lithium-ion batteries: performance evaluation in extreme temperatures. Mater Today Chem. 29:101407. doi:10.1016/j.mtchem.2023.101407.
  • Burke A, Miller M. 2011. The power capability of ultracapacitors and lithium batteries for electric and hybrid vehicle applications. J Power Sources. 196(1):514–522.: 10.1016/j.jpowsour.2010.06.092.
  • Chalkias DA, Verykokkos NE, Kollia E, Petala A, Kostopoulos V, Papanicolaou GC. 2021. High-efficiency quasi-solid state dye-sensitized solar cells using a polymer blend electrolyte with “polymer-in-salt” conduction characteristics. Sol Energy. 222:35–47. doi:10.1016/j.solener.2021.04.051.
  • Cho S, Chen C-F, Mukherjee PP. 2015. Influence of microstructure on impedance response in intercalation electrodes. J Electrochem Soc. 162(7): a 1202–A1214. doi:10.1149/2.0331507jes.
  • Choudhary S, Sengwa RJ. 2017. Effects of different inorganic nanoparticles on the structural, dielectric and ion transportation properties of polymers blend based nanocomposite solid polymer electrolytes. Electrochim Acta. 247:924–941. doi:10.1016/j.electacta.2017.07.051.
  • Daigle JC, Vijh A, Hovington P, Gagnon C, Hamel-Pâquet J, Verreault S, Turcotte N, Clément D, Guerfi A, Zaghib K. 2015. Lithium battery with solid polymer electrolyte based on comb-like copolymers. J Power Sources. 279:372–383. doi:10.1016/j.jpowsour.2014.12.061.
  • Dennis JO, Adam AA, Ali MKM, Soleimani H, Shukur MF, Ibnaouf KH, Aldaghri O, Eisa MH, Ibrahem MA, Abdulkadir BA, et al. 2022. Substantial proton ion conduction in methylcellulose/pectin/ammonium chloride based solid nanocomposite polymer electrolytes: effect of ZnO nanofiller. Membranes (Basel). 12(7):706. doi:10.3390/membranes12070706.
  • Dennis JO, Shukur MF, Aldaghri OA, Ibnaouf KH, Adam AA, Usman F, Hassan YM, Alsadig A, Danbature WL, Abdulkadir BA. 2023. A review of current trends on polyvinyl alcohol (PVA)-based solid polymer electrolytes. Molecules. 28(4):1781. doi:10.3390/molecules28041781.
  • Dennis OJ, Ali MKM, Ibnaouf KH, Aldaghri O, Abdel All NFM, Adam AA, Usman F, Hassan YM, Abdulkadir BA. 2022. Effect of ZnO nanofiller on structural and electrochemical performance improvement of solid polymer electrolytes based on polyvinyl alcohol–cellulose acetate–potassium carbonate composites. Molecules. 27(17):75528. doi:10.3390/molecules27175528.
  • Dhatarwal P, Choudhary S, Sengwa RJ. 2018. Electrochemical performance of Li+-ion conducting solid polymer electrolytes based on PEO–PMMA blend matrix incorporated with various inorganic nanoparticles for the lithium ion batteries. Compos Commun. 10:11–17. doi:10.1016/j.coco.2018.05.004.
  • Dhatarwal P, Sengwa RJ. 2020. Dielectric relaxation, Li-ion transport, electrochemical, and structural behaviour of PEO/PVDF/LiClO4/TiO2/PC-based plasticized nanocomposite solid polymer electrolyte films. Compos Commun. 17:182–191. doi:10.1016/j.coco.2019.12.006.
  • Enayati-Gerdroodbar A, Eliseeva S, N, Salami-Kalajahi M. 2023. A review on the effect of nanoparticles/matrix interactions on the battery performance of composite polymer electrolytes. J Storage Mater. 68:107836. doi:10.1016/j.est.2023.107836.
  • Geng H, Hu X, Zhou J, Xu X, Wang M, Guo A, Du H, Liu J. 2016. Fabrication and compressive properties of closed-cell alumina ceramics by binding hollow alumina spheres with high-temperature binder. Ceram Int. 42(14):16071–16076. doi:10.1016/j.ceramint.2016.07.117.
  • Guo M, Zhang M, He D, Hu J, Wang X, Gong C, Xie X, Xue Z. 2017. Comb-like solid polymer electrolyte based on polyethylene glycol-grafted sulfonated polyether ether ketone. Electrochim Acta. 255:396–404. doi:10.1016/j.electacta.2017.10.033.
  • Halder B, Mohamed MG, Kuo SW, Elumalai P. 2024. Review on composite polymer electrolyte using PVDF-HFP for solid-state lithium-ion battery. Mater Today Chem. 36:101926. doi:10.1016/j.mtchem.2024.101926.
  • Hao C, Quan-Yao L, Mao-Xiang J, Fei C, Wei-Yong Y, Bo-Wei J, Fei-Yue T, Xiang-Qian S, Shi-Biao Q. 2020. Improved interface stability and room-temperature performance of solid-state lithium batteries by integrating cathode/electrolyte and graphite coating. ACS Appl Mater Interf. 12:15120–15127.
  • He T, Jia R, Lang X, Wu X, Wang Y. 2017. Preparation and electrochemical performance of PVdF ultrafine porous fiber separator-cum-electrolyte for supercapacitor. J Electrochem Soc. 164(13):E379–E384. doi:10.1149/2.0631713jes.
  • He Y, Liu N, Kohl PA. 2021. Difunctional block copolymer with ion solvating and crosslinking sites as solid polymer electrolyte for lithium batteries. J Power Sources. 481:228832. doi:10.1016/j.jpowsour.2020.228832.
  • Hou X, Peng T, Cheng J, Yu Q, Luo R, Lu Y, Liu X, Kim JK, He J, Luo Y. 2017. Ultrathin ZnS nanosheet/carbon nanotube hybrid electrode for high-performance flexible all-solid-state supercapacitor. Nano Res. 10(8):2570–2583. doi:10.1007/s12274-017-1459-9.
  • Hua Y, Maoxiang J, Li W, Hong X, Xiaohong Y, Xiangming H. 2024. PDOL‑based solid electrolyte toward practical application: opportunities and challenges. Nano Micro Lett. 16(1):127. doi:10.1007/s40820-024-01354-z.
  • Hua Y, Bo Z, Maoxiang J, Xiangqian S, Li W, Hong X, Xiaohong Y, Xiangming H. 2022a. In situ catalytic polymerization of a highly homogeneous PDOL composite electrolyte for long-cycle high-voltage solid-state lithium batteries. Adv. Energy Mater. 22:2201762.
  • Hu X, Chen Y, Hu Z, Li Y, Ling Z. 2018. All-solid-state supercapacitors based on a carbon-filled porous/dense/porous layered ceramic electrolyte. J Electrochem Soc. 165(7): a 1269–A1274. doi:10.1149/2.0481807jes.
  • Hu X, Jing M, Yang H, Liu Q, Chen F, Yuan W, Kang L, Li D, Shen X. 2021. Enhanced ionic conductivity and lithium dendrite suppression of polymer solid electrolytes by alumina nanorods and interfacial graphite modification. J Colloid Interface Sci. 590:50–59. doi:10.1016/j.jcis.2021.01.018.
  • Huen P, Peru F, Charalambopoulou G, Steriotis TA, Jensen TR, Ravnsbæk DB. 2017. Nanoconfined NaAlH4 conversion electrodes for Li batteries. ACS Omega. 2(5):1956–1967. doi:10.1021/acsomega.7b00143.
  • Jeedi VR, Ganta KK, Varma ISR, Yalla M, Narender Reddy S, Chary AS. 2023. Alumina nanofiller functionality on electrical and ion transport properties of PEO-PVdF/KNO3/SN nanocomposite polymer electrolytes. Result Chem. 5:100814. doi:10.1016/j.rechem.2023.100814.
  • Jian S, Cao Y, Feng W, Yin G, Zhao Y, Lai Y, Zhang T, Ling X, Wu H, Bi H, et al. 2022. Recent progress in solid polymer electrolytes with various dimensional fillers: a review. Mater Today Sustain. 20:100224. doi:10.1016/j.mtsust.2022.100224.
  • Jie L, Mao-Xiang J, Rui L, Lin-Xin L, Zhen-Hao H, Hua Y, Ming-Quan L, Shahid H, Jun X, Xiang-Qian S. 2022. Al2O3 fiber-reinforced polymer solid electrolyte films with excellent lithium-ion transport properties for high-voltage solid-state lithium batteries. ACS Appl Polym Mater. 4:7144–7151.
  • Kim JS, Lim JK. 2021. Mechanical properties and interfacial compatibility of functionalized carbon nanotubes as fillers for chitosan solid polymer electrolytes. React Funct Polym. 166:105013. doi:10.1016/j.reactfunctpolym.2021.105013.
  • Klongkan S, Pumchusak J. 2015. Effects of nano alumina and plasticizers on morphology, ionic conductivity, thermal and mechanical properties of PEO-LiCF3SO3 solid polymer electrolyte. Electrochim Acta. 161:171–176. doi:10.1016/j.electacta.2015.02.074.
  • Li J, Zhong L, Li J, Wu H, Shao W, Wang P, Liu M, Zhang G, Jing M. 2023. Insights into the effects of different inorganic fillers on the electrochemical performances of polymer solid electrolytes. Coll Surf A. 671:131704. doi:10.1016/j.colsurfa.2023.131704.
  • Li W, Song B, Manthiram A. 2017. High-voltage positive electrode materials for lithium-ion batteries. Chem Soc Rev. 46(10):3006–3059. doi:10.1039/c6cs00875e.
  • Li X, Liu K, Liu Z, Wang Z, Li B, Zhang D. 2017. Hierarchical porous carbon from hazardous waste oily sludge for all-solid-state flexible supercapacitor. Electrochim Acta. 240:43–52. doi:10.1016/j.electacta.2017.04.061.
  • Liang S, Yan W, Wu X, Zhang Y, Zhu Y, Wang H, Wu Y. 2018. Gel polymer electrolytes for lithium ion batteries: fabrication, characterization and performance. Solid State Ionics. 318:2–18. doi:10.1016/j.ssi.2017.12.023.
  • Liew C, Ramesh S, Arof AK. 2014. Characterization of ionic liquid added poly (vinyl alcohol) -based proton conducting polymer electrolytes and electrochemical studies on the supercapacitors. Int J Hydrogen Energy. 40(1):852–862. doi:10.1016/j.ijhydene.2014.09.160.
  • Liu J, Bao Z, Cui Y, Dufek EJ, Goodenough JB, Khalifah P, Li Q, Liaw BY, Liu P, Manthiram A, et al. 2019. Pathways for practical high-energy long-cycling lithium metal batteries. Nat Energy. 4(3):180–186. doi:10.1038/s41560-019-0338-x.
  • Long L, Wang S, Xiao M, Meng Y. 2016. Polymer electrolytes for lithium polymer batteries. J Mater Chem A. 4(26):10038–10069. doi:10.1039/C6TA02621D.
  • Moeremans B, Cheng H, Merola C, Hu Q, Oezaslan M, Safari M, Bael MK, Van Hardy A, Valtiner M, Renner FU. 2019. In situ mechanical analysis of the nanoscopic solid electrolyte interphase on anodes of Li-ion batteries. Adv Sci (Weinh). 6(16):1900190. doi:10.1002/advs.201900190.
  • Muthuvinayagam M, Gopinathan C. 2015. Characterization of proton conducting polymer blend electrolytes based on PVdF-PVA. Polymer. 68:122–130. doi:10.1016/j.polymer.2015.05.008.
  • Noor NAM, Isa MIN. 2019. Investigation on transport and thermal studies of solid polymer electrolyte based on carboxymethyl cellulose doped ammonium thiocyanate for potential application in electrochemical devices. Int J Hydrogen Energy. 44(16):8298–8306. doi:10.1016/j.ijhydene.2019.02.062.
  • Nurhaziqah AMS, Ahmad MK, Faridah AB, Saputri DG, Ramli SA, Mamat MH, Shimomura M. 2023. Optimization of polymer blend electrolytes with tuneable conductivity potentials. Mater Lett. 334:133711. doi:10.1016/j.matlet.2022.133711.
  • Ping J, Pan Y, Pan H, Wu B, Zhou H, Shen Z, Fan X. 2015. Microphase separation and high ionic conductivity at high temperatures of lithium salt-doped amphiphilic alternating copolymer brush with rigid side chains. Macromolecules. 1-8. 48(23):8557–8564. doi:10.1021/acs.macromol.5b01678.
  • Pradeepa P, Sowmya G, Edwinraj S, Fareetha Begum G, Prabhu MR. 2016. Influence of Al2O3 on the structure and electrochemical properties of PVAc/PMMA based blend composite polymer electrolytes. Mater Today Proc. 3(6):2187–2196. doi:10.1016/j.matpr.2016.04.125.
  • Reddy RM, Jaipal Reddy M, Subrahmanyam AR, Maheswar Reddy M, Venkata Ramana K, Ramesh Reddy T. 2022. Effect of EC plasticizer on Na + ion based PMMA: PEO blend solid polymer electrolyte system. Mater Today Proc. 62:5266–5270. doi:10.1016/j.matpr.2022.03.248.
  • Roy AS, Parveen A, Badi N, Khasim S. 2015. Electrochemical cell parameters of poly(ethylene oxide)/(KClO3 + NaNO3) composites as polymer electrolyte in secondary solid-state batteries. Ionics. 21(12):3193–3199. doi:10.1007/s11581-015-1509-9.
  • Salleh NS, Aziz SB, Aspanut Z, Kadir MFZ. 2016. Electrical impedance and conduction mechanism analysis of biopolymer electrolytes based on methyl cellulose doped with ammonium iodide. Ionics. 22(11):2157–2167. doi:10.1007/s11581-016-1731-0.
  • Sasikumar M, Krishna RH, Raja M, Therese HA, Balakrishnan NTM, Raghavan P, Sivakumar P. 2021. Titanium dioxide nano-ceramic filler in solid polymer electrolytes: strategy towards suppressed dendrite formation and enhanced electrochemical performance for safe lithium ion batteries. J Alloys Compd. 882:160709. doi:10.1016/j.jallcom.2021.160709.
  • Sharma S, Verma A, Rangappa SM, Siengchin S, Ogata S. 2023. Recent progressive developments in conductive-fillers based polymer nanocomposites (CFPNC’s) and conducting polymeric nanocomposites (CPNC’s) for multifaceted sensing applications. J Mater Res Technol. 26:5921–5974. doi:10.1016/j.jmrt.2023.08.300.
  • Sengwa RJ, Choudhary S. 2017. Dielectric and electrical properties of PEO–Al2O3 nanocomposites. J Alloys Compd. 701:652–659. doi:10.1016/j.jallcom.2017.01.155.
  • Sharma JP, Sekhon SS. 2013. Effect of plasticizer and fumed silica on ionic conductivity behaviour of proton conducting polymer electrolytes containing HPF6. Bull Mater Sci. 36(4):629–634. doi:10.1007/s12034-013-0516-6.
  • Shekibi Y, Pringle JM, Sun J, Pas SJ, Rocher NM, Clare BR, Hill AJ, Macfarlane R, Forsyth M. 2010. Lithium-functionalised silica nanoparticles for enhanced ionic conductivity in an organic ionic plastic crystal. J Mater Chem. 20(2):338–344. doi:10.1039/B914884A.
  • Sun J, Yuan H, Yang J, Zhang Y-W, Wang J. 2023. Electrolytes for better and safer batteries: liquid, solid or frameworked, what’s next? Next Materials. 1(3):100024. doi:10.1016/j.nxmate.2023.100024.
  • Tamilselvi P, Hema M. 2014. Conductivity studies of LiCF3SO3 doped PVA: PVdF blend polymer electrolyte. Physica B. 437:53–57. doi:10.1016/j.physb.2013.12.028.
  • Tan X, Wu Y, Tang W, Song S, Yao J, Wen Z, Lu L, Savilov SV, Hu N, Molenda J. 2020. Preparation of nanocomposite polymer electrolyte via in situ synthesis of SiO2 nanoparticles in PEO. Nanomaterials (Basel). 10(1):157. doi:10.3390/nano10010157.
  • Teo LP, Buraidah MH, Arof AK. 2021. Development on solid polymer electrolytes for electrochemical devices. Molecules. 26(21):6499. doi:10.3390/molecules26216499.
  • Tiwari SK, Thakur AK, De Adhikari A, Zhu Y, Wang N. 2020. Current research of graphene-based nanocomposites and their application for supercapacitors. Nanomaterials (Basel). 10(10):2046. doi:10.3390/nano10102046.
  • Tron A, Nosenko A, Park YD, Mun J. 2018. Enhanced ionic conductivity of the solid electrolyte for lithium-ion batteries. J Solid State Chem. 258:467–470. doi:10.1016/j.jssc.2017.11.020.
  • Verma ML, Sahu HD. 2015. Ionic conductivity and dielectric behavior of PEO-based silver ion conducting nanocomposite polymer electrolytes. Ionics. 21(12):3223–3231. doi:10.1007/s11581-015-1517-9.
  • Vo PHH, Seongjoon S, Jaehyun H. 2021. Inorganic fillers in composite gel polymer electrolytes for high-performance lithium and non-lithium polymer batteries. Nanomaterials. 11(3):614. doi:10.3390/nano11030614.
  • Wang J, Fan L, Du Q, Jiao K. 2022. Lithium ion transport in solid polymer electrolyte filled with alumina nanoparticles. Energy Adv. 1(5):269–276. doi:10.1039/D2YA00025C.
  • Wang M, Peng Z, Luo W, Zhang Q, Li Z, Zhu Y, Lin H, Cai L, Yao X, Ouyang C, et al. 2020. Improving the interfacial stability between lithium and solid-state electrolyte via dipole-structured lithium layer deposited on graphene oxide. Adv Sci (Weinh). 7(13):2000237. doi:10.1002/advs.202000237.
  • Wang T, Zhong L, Xiao M, Han D, Wang S, Huang Z, Huang S, Sun L, Meng Y. 2023. Block copolymer electrolytes for lithium metal batteries: strategies to boost both ionic conductivity and mechanical strength. Prog Polym Sci. 146:101743. doi:10.1016/j.progpolymsci.2023.101743.
  • Wei T, Wang Z, Zhang M, Zhang Q, Lu J, Zhou Y, Sun C, Yu Z, Wang Y, Qiao M, et al. 2022. Activated metal-organic frameworks (a-MIL-100 (Fe)) as fillers in polymer electrolyte for high-performance all-solid-state lithium metal batteries. Mater Today Commun. 31:103518. doi:10.1016/j.mtcomm.2022.103518.
  • Wenqiang L, Xuguang L, Pingping Z, Zhiyi W, Xia L, Maocong H. 2019. Nano-sized plate-like alumina synthesis via solution combustion. Ceram Int. 45(8):9919–9925. doi:10.1016/j.ceramint.2019.02.034.
  • Weston JE, Steele BCH. 1982. Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly (ethylene oxide) polymer electrolytes. Solid State Lonics. 7(1):75–79. doi:10.1016/0167-2738(82)90072-8.
  • Widstrom MD, Ludwig KB, Matthews JE, Jarry A, Erdi M, Cresce AV, Rubloff G, Kofinas P. 2020. Enabling high performance all-solid-state lithium metal batteries using solid polymer electrolytes plasticized with ionic liquid. Electrochim Acta. 345:136156. doi:10.1016/j.electacta.2020.136156.
  • Xiang Q, Cheng W, Wen S, Wu B, Sun J, Wang S. 2022. Electro-peroxone with solid polymer electrolytes: a novel system for degradation of plasticizers in natural effluents. Water Res. 216:118302. doi:10.1016/j.watres.2022.118302.
  • Yan D, Bazant MZ, Biesheuvel PM, Pugh MC, Dawson FP. 2017. Theory of linear sweep voltammetry with diffuse charge: unsupported electrolytes, thin films, and leaky membranes. Phys Rev E. 95(3-1):033303. doi:10.1103/PhysRevE.95.033303.
  • Yang X, Liu J, Pei N, Chen Z, Li R, Fu L, Zhang P, Zhao J. 2023. The critical role of fillers in composite polymer electrolytes for lithium battery. Nano-Micro Lett. 15(1):10513. doi:10.1007/s40820-023-01051-3.
  • Yao P, Yu H, Ding Z, Liu Y, Lu J, Lavorgna M, Wu J, Liu X. 2019. Review on polymer-based composite electrolytes for lithium batteries. Front Chem. 7:522. doi:10.3389/fchem.2019.00522.
  • Yoo K, Kaliamurthy AK, Lee JJ, Ko MJ. 2023. PVP/PEG polymer blend based electrolytes for quasi-solid-state dye-sensitized solar cells operating at low temperature. J Power Sources. 583:233568. doi:10.1016/j.jpowsour.2023.233568.
  • Yusof YM, Shukur MF, Illias HA, Kadir MFZ. 2014. Conductivity and electrical properties of corn starch-chitosan blend biopolymer electrolyte incorporated with ammonium iodide. Phys Scr. 89(3):035701. doi:10.1088/0031-8949/89/03/035701.
  • Yusof YM, Illias HA, Shukur MF, Kadir MFZ. 2017. Characterization of starch-chitosan blend-based electrolyte doped with ammonium iodide for application in proton batteries. Ionics (Kiel). 23(3):681–697. doi:10.1007/s11581-016-1856-1.
  • Zebardastan N, Khanmirzaei MH, Ramesh S, Ramesh K. 2017. Performance enhancement of poly (vinylidene fluoride-co-hexafluoro propylene)/polyethylene oxide based nanocomposite polymer electrolyte with ZnO nanofiller for dye-sensitized solar cell. Org Electron. 49:292–299. doi:10.1016/j.orgel.2017.06.062.
  • Zeng Q, Lv Z, Li S, Yang B, He J, Song J. 2024. Electrolytes for liquid metal batteries. In Materials Research Bulletin. 170:112586. Elsevier Ltd. doi:10.1016/j.materresbull.2023.112586.
  • Zhang Y, Bao W, Li H, Zhao L, Yi B, Zhao H, Zuo Y, Su L, Cai X, Liu L, et al. 2022. Incorporating highly dispersed alumina in PEO-based solid electrolytes by vapor phase infiltration for all-solid-state lithium metal batteries. Mater Today Energy. 28:101074. doi:10.1016/j.mtener.2022.101074.
  • Zhang Z, Wang X, Li X, Zhao J, Liu G, Yu W, Dong X, Wang J. 2023. Review on composite solid electrolytes for solid-state lithium-ion batteries. Mater Today Sustain. 21:100316. doi:10.1016/j.mtsust.2023.100316.
  • Zhao Q. 2019. Interphases of polymer electrolytes. Joule. 3(7):1569–1571. doi:10.1016/j.joule.2019.06.004.
  • Zhong C, Deng Y, Hu W, Qiao J, Zhang L, Zhang J. 2015. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem Soc Rev. 44(21):7484–7539. doi:10.1039/c5cs00303b.
  • Zhu X, Yu S, Xu K, Zhang Y, Zhang L, Lou G, Wu Y, Zhu E, Chen H, Shen Z, et al. 2018. Sustainable activated carbons from dead ginkgo leaves for supercapacitor electrode active materials. Chem Eng Sci. 181:36–45. doi:10.1016/j.ces.2018.02.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.