1,180
Views
53
CrossRef citations to date
0
Altmetric
Research articles

Effect of silicon supplementation on growth and metabolism of strawberry plants at three developmental stages

, , &
Pages 144-161 | Received 29 May 2017, Accepted 28 Aug 2017, Published online: 18 Sep 2017

References

  • Acuña-Maldonado LE, Pritts MP. 2008. Carbon and nitrogen reserves in perennial strawberry affect plant growth and yield. J Am Soc Hortic Sci. 133:735–742.
  • Alov P, Tsakovska I, Pajeva I. 2015. Computational studies of free radical-scavenging properties of phenolic compounds. Curr Top Med Chem. 15:85–104. doi: 10.2174/1568026615666141209143702
  • Amil-Ruiz F, Blanco-Portales R, Muñoz-Blanco J, Caballero JL. 2011. The strawberry plant defense mechanism: a molecular review. Plant Cell Physiol. 52:1873–1903. doi: 10.1093/pcp/pcr136
  • Buricova L, Andjelkovic M, Cermakova A, Reblova Z, Jurcek O, Kolehmainen E, Verhe R, Kvasnicka F. 2011. Antioxidant capacities and antioxidants of strawberry, blackberry and raspberry leaves. Czech J Food Sci. 29:181–189. doi: 10.17221/300/2010-CJFS
  • Cao G, Sofic E, Prior RL. 1997. Antioxidant and prooxidant behavior of flavonoids: structure-activity relationships. Free Radical Biol Med. 22:749–760. doi: 10.1016/S0891-5849(96)00351-6
  • Cocco C, Gonçalves MA, Reisser Junior C, Marafon AC, Antunes LEC. 2016. Carbohydrate content and development of strawberry transplants from Rio Grande Do Sul and imported. Rev Bras Frutic. 38:156. doi: 10.1590/0100-29452016581
  • de Ascensao AR, Dubery IA. 2003. Soluble and wall-bound phenolics and phenolic polymers in Musa acuminata roots exposed to elicitors from Fusarium oxysporum f. sp. cubense. Phytochem. 63:679–686. doi: 10.1016/S0031-9422(03)00286-3
  • Detmann KC, Araújo WL, Martins SCV, Fernie AR, Fábio M, DaMatta FM. 2013. Metabolic alterations triggered by silicon nutrition. Is there a signaling role for silicon? Plant Signal Behav. 8:71–74. doi: 10.4161/psb.22523
  • Elliott CL, Snyder GH. 1991. Autoclave-induced digestion for the colorimetric determination of silicon in rice straw. J Agr Food Chem. 39:1118–1119. doi: 10.1021/jf00006a024
  • Fortunato AA, da Silva WL, Rodrigues FÁ. 2014. Phenylpropanoid pathway is potentiated by silicon in the roots of banana plants during the infection process of Fusarium oxysporum f. sp. cubense. Phytopathol. 104:597–603. doi: 10.1094/PHYTO-07-13-0203-R
  • Galano A, Francisco Marquez M, Pérez-González A. 2014. Ellagic acid: an unusually versatile protector against oxidative stress. Chem Res Toxicol. 27:904–918. doi: 10.1021/tx500065y
  • Giampieri F, Alvarez-Suarez JM, Battino M. 2014. Strawberry and human health: effects beyond antioxidant activity. J Agric Food Chem. 62:3867–3876. doi: 10.1021/jf405455n
  • Gill SS, Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem. 48:909–930. doi: 10.1016/j.plaphy.2010.08.016
  • Hajiboland R. 2012. Effect of micronutrient deficiencies on plants stress responses. In: Ahmad P, Prasad MNV, editors. Abiotic stress responses in plants. New York, NY: Springer; p. 283–329.
  • Hajiboland R, Bahrami-Rad S, Bastani S. 2013. Phenolics metabolism in boron-deficient tea [Camellia sinensis (L.) O. Kuntze] plants. Acta Biol Hung. 64:196–206. doi: 10.1556/ABiol.64.2013.2.6
  • Hajiboland R, Bahrami-Rad S, Poschenrieder C. 2017a. Silicon modifies both a local response and a systemic response to mechanical stress in tobacco leaves. Biol Plant. 61:187–191. doi: 10.1007/s10535-016-0633-3
  • Hajiboland R, Cheraghvareh L, Poschenrieder C. 2017b. Improvement of drought tolerance in tobacco (Nicotiana rustica L.) plants by silicon. J Plant Nutr. doi:10.1080/01904167.2017.1310887.
  • Hajiboland R, Sadeghzade N. 2014. Effect of selenium on CO2 and NO3− assimilation under low and adequate nitrogen supply in wheat (Triticum aestivum L.). Photosynthetica. 52:501–510. doi: 10.1007/s11099-014-0058-1
  • Helrich K. 1990. Official methods of analysis, 15th ed. Arlington, VA, USA: Association of Official Analytical Chemists (AOAC).
  • Kårlund A, Salminen JP, Koskinen P, Ahern JR, Karonen M, Tiilikkala K, Karjalainen RO. 2014. Polyphenols in strawberry (Fragaria× ananassa) leaves induced by plant activators. J Agric Food Chem. 62:4592–4600. doi: 10.1021/jf405589f
  • Klopotek Y, Otto K, Böhm V. 2005. Processing strawberries to different products alters contents of vitamin C, total phenolics, total anthocyanins, and antioxidant capacity. J Agric Food Chem. 53:5640–5646. doi: 10.1021/jf047947v
  • Lattanzio V, Lattanzio VM, Cardinali A. 2006. Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. In: Imperato F, editor. Phytochemistry: advances in research. Kerala: Research Signpost; p. 23–67.
  • Lawlor DW. 2002. Carbon and nitrogen assimilation in relation to yield: mechanisms are the key to understanding production systems. J Exp Bot. 53:773–787. doi: 10.1093/jxb/53.370.773
  • Liu JJ, Lin SH, Xu PL, Wang XJ, Bai JG. 2009. Effects of exogenous silicon on the activities of antioxidant enzymes and lipid peroxidation in chilling-stressed cucumber leaves. Agr Sci China. 8:1075–1086. doi: 10.1016/S1671-2927(08)60315-6
  • Ma J, Cai H, He C, Zhang W, Wang L. 2015. A hemicellulose-bound form of silicon inhibits cadmium ion uptake in rice (Oryza sativa) cells. New Phytol. 206:1063–1074. doi: 10.1111/nph.13276
  • Malik JA, Kumar S, Thakur P, Sharma S, Kaur N, Kaur R, Pathania D, Bhandhari K, Kaushal N, Singh K, et al. 2011. Promotion of growth in mungbean (Phaseolus aureus Roxb.) by selenium is associated with stimulation of carbohydrate metabolism. Biol Trace Elem Res. 143:530–539.
  • Maksimović DJ, Bogdanović J, Maksimović V, Nikolic M. 2007. Silicon modulates the metabolism and utilization of phenolic compounds in cucumber (Cucumis sativus L.) grown at excess manganese. J Plant Nutr Soil Sci. 170:739–744. doi: 10.1002/jpln.200700101
  • Mehrabanjoubani P, Abdolzadeh A, Sadeghipour HR, Aghdasi M. 2015. Silicon affects transcellular and apoplastic uptake of some nutrients in plants. Pedosphere. 25:192–201. doi: 10.1016/S1002-0160(15)60004-2
  • Mitcham B. 1996. Quality assurance for strawberries: a case study. Perishables Handling Newsletter. 85:6–9.
  • Miyake Y, Takahashi E. 1986. Effect of silicon on the growth and fruit production of strawberry plants in a solution culture. Soil Sci Plant Nutr. 32:321–326. doi: 10.1080/00380768.1986.10557510
  • Nicholson RL, Hammerschmidt R. 1992. Phenolic compounds and their role in disease resistance. Annu Rev Phytopathol. 30:369–389. doi: 10.1146/annurev.py.30.090192.002101
  • Nour V, Trandafir I, Cosmulescu S. 2013. HPLC determination of phenolic acids, flavonoids and juglone in walnut leaves. J Chromatogr Sci. 51:883–890. doi: 10.1093/chromsci/bms180
  • Nunes-Nesi A, Fernie AR, Stitt M. 2010. Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions. Mol Plant. 3:973–996. doi: 10.1093/mp/ssq049
  • Nwugo CC, Huerta AJ. 2011. The effect of silicon on the leaf proteome of rice (Oryza sativa L.) plants under cadmium-stress. J Proteome Res. 10:518–528. doi: 10.1021/pr100716h
  • Panico AM, Garufi F, Nitto S, Di Mauro R, Longhitano RC, Magrì G, Catalfo A, Serrentino ME, De Guidi G. 2009. Antioxidant activity and phenolic content of strawberry genotypes from Fragaria × ananassa. Pharmaceutical Biol. 47:203–208. doi: 10.1080/13880200802462337
  • Pavlovic J, Samardzic J, Maksimović V, Timotijevic G, Stevic N, Laursen KH, Hansen TH, Husted S, Schjoerring JK, Liang Y, et al. 2013. Silicon alleviates iron deficiency in cucumber by promoting mobilization of iron in the root apoplast. New Phytol. 198:1096–1107. doi: 10.1111/nph.12213
  • Quideau S, Deffieux D, Douat-Casassus C, Pouysegu L. 2011. Plant polyphenols: chemical properties, biological activities, and synthesis. Angew Chem Int Ed. 50:586–621. doi: 10.1002/anie.201000044
  • Savvas D, Ntatsi G. 2015. Biostimulant activity of silicon in horticulture. Sci Hortic. 196:66–81. doi: 10.1016/j.scienta.2015.09.010
  • Schaller J, Brackhage C, Dudel EG. 2012. Silicon availability changes structural carbon ratio and phenol content of grasses. Environ Exp Bot. 77:283–287. doi: 10.1016/j.envexpbot.2011.12.009
  • Siegel BZ. 1993. Plant peroxidases–an organismic perspective. Plant Growth Regul. 12:303–312. doi: 10.1007/BF00027212
  • Swain T, Hillis EE. 1959. The phenolic constituents of Prunus domestica I. The quantitative analysis of phenolic constituents. J Sci Food Agric. 10:63–68. doi: 10.1002/jsfa.2740100110
  • Tesfay SZ, Bertling I, Bower JP. 2011. Effects of postharvest potassium silicate application on phenolics and other anti-oxidant systems aligned to avocado fruit quality. Postharvest Biol Technol. 60:92–99. doi: 10.1016/j.postharvbio.2010.12.011
  • Van Bockhaven J, De Vleesschauwer D, Höfte M. 2013. Towards establishing broad-spectrum disease resistance in plants: silicon leads the way. J Exp Bot. 64:1281–1293. doi: 10.1093/jxb/ers329
  • Wang SY, Galletta GJ. 1998. Foliar application of potassium silicate induces metabolic changes in strawberry plants. J Plant Nutr. 21:157–167. doi: 10.1080/01904169809365390
  • Weaver LM, Herrmann KM. 1997. Dynamics of the shikimate pathway in plants. Trends Plant Sci. 2:346–351. doi: 10.1016/S1360-1385(97)84622-5
  • Winkel-Shirley B. 2002. Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol. 5:218–223. doi: 10.1016/S1369-5266(02)00256-X
  • Yemm EW, Cocking EC, Ricketts RE. 1955. The determination of amino acids with ninhydrin. Analyst. 80:209–213. doi: 10.1039/an9558000209
  • Yemm EW, Willis AJ. 1954. The estimation of carbohydrates extracts by anthrone. Biochem J. 57:508–514. doi: 10.1042/bj0570508
  • Zhu Y, Gong H. 2014. Beneficial effects of silicon on salt and drought tolerance in plants. Agron Sustain Dev. 34:455–472. doi: 10.1007/s13593-013-0194-1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.